Characterization of Nanocrystalline Alloys by Mössbauer Effect Techniques

  • Marcel Miglierini
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)

Abstract

The use of a non-destructive nuclear-physical method, namely 57Fe Mössbauer spectroscopy, is discussed for the investigation of magnetic and structural arrangement of Fe-based nanocrystalline alloys. Transmission Mössbauer spectroscopy (TMS) as well as conversion electron Mössbauer spectroscopy (CEMS) are reviewed using FINEMET- and NANOPERM-type nanocrystalline alloys as examples. They consist of nanocrystalline grains embedded within a residual amorphous matrix thus exhibiting a two-phase magnetic behaviour. Hyperfine field distributions derived from Mössbauer spectra provide information about the structure and magnetic states of atoms located in different structural positions. Prior to this, basic features of Mössbauer spectra are briefly summarised. Influence of composition, content of nanograms, and interactions among them are demonstrated as a function of annealing temperature and measuring temperature for bulk (TMS) and surface (CEMS) of the investigated nanocrystalline alloys.

Keywords

Mossbauer Spectroscopy Hyperfine Field Conversion Electron Mossbauer Spectroscopy Conversion Electron Mossbauer Spectroscopy Nanocrystalline Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoshizawa, Y., Oguma, S. and Yamauchi, K (1988) New-Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64, 6044–6046.CrossRefGoogle Scholar
  2. 2.
    Hernando, A., Vázquez, M. and Páramo, D. (1998) Applications of amorphous and nanocrystalline magnetic materials as sensing elements, Mater. Sci. Forum 269-272, 1033–1042.CrossRefGoogle Scholar
  3. 3.
    Herzer, G. (1993) Nanocrystalline soft magnetic materials, Phys. Scr. T49, 307–314.CrossRefGoogle Scholar
  4. 4.
    Miglierini, M., Kopcewicz, M., Idzikowski, B., Horváth, Z. E., Grabias, A., Škorvánek, I., Dłużewski, P. and Daróczi, Cs. S. (1999) Structure, hyperfine interactions and magnetic behavior of amorphous and nanocrystalline Fe80M7B12Cu1 (M = Mo, Nb, Ti) alloys, J. Appl. Phys. 85, 1014–1025.CrossRefGoogle Scholar
  5. 5.
    G. J. Long (ed.), (1984, 1987, 1989), in Mössbauer Spectroscopy Applied to Inorganic Chemistry Vol 1, 2, and 3, Plenum Press, New-York. G. J. Long and F Grandjean (eds.), (1993,1996), in Mössbauer Spectroscopy Applied to Magnetism and Materials Science Vol 1, 2, Plenum Press, New-York. M. Miglierini and D. Petridis (eds.), (1999), in Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht.Google Scholar
  6. 6.
    Mössbauer, R. L. (1958) Kernresonanzfluoreszenz von Gammastrahlung in Ir191, Z. Phys. 151, 124–143.CrossRefGoogle Scholar
  7. 7.
    Mössbauer, R. L. (1958) Kernresonanzeabsorption von Gammastrahlung in Ir191, Naturwissenschaften 45, 538–539.CrossRefGoogle Scholar
  8. 8.
    Campbell, S. J., Aubertin, F. (1989) Evaluation of distributed hyperfine parameters, in G. J. Long and F Grandjean (eds.), Mössbauer Spectroscopy Applied to Inorganic Chemistry Vol 3, Plenum Press, New-York, pp. 183-242.Google Scholar
  9. 9.
    Gonser, U., Limbach, C. T. and Aubertin, F. (1988) Mössbauer spctroscopy in amorphous metals: failures and successes, J. Non-Cryst. Solids 106, 395–398.CrossRefGoogle Scholar
  10. 10.
    Suzuki, K., Kataoka, N., Inoue, A., Makino, A. and Masumoto, T. (1990) High saturation magnetization and soft magnetic properties of FeZrB alloys with ultrafine structure, Mater. Trans. JIM 31, 743–746.Google Scholar
  11. 11.
    Miglierini, M. (1994) Mössbauer-effect study of the hyperfine field distributions in the residual amorphous phase of Fe-Cu-Nb-Si-B nanocrystalline alloys, J. Phys.: Condens. Matter 6, 1431–1438.CrossRefGoogle Scholar
  12. 12.
    Greneche, J. M. (1997) Nanocrystalline iron-based alloys investigated by Mössbauer spectrometry, Hyperfine Interactions 110, 81–91.CrossRefGoogle Scholar
  13. 13.
    Miglierini, M. and Grenèche, J. M. (1999) Mössbauer spectrometry applied to iron-based nanocrystalline alloys II. Hyperfine fields of amorphous and interfacial regions, in M. Miglierini and D. Petridis (eds.), Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht, pp. 257-272.CrossRefGoogle Scholar
  14. 14.
    Jiang, J., Aubertin, F., Gonser, U. and Hilzinger, H. R. (1991) Mössbauer spectroscopy and X-ray diffraction studies of the crystallization in the amorphous Fe73.5Cu1Nb3Si13.5B9, Z Metallk. 82, 698–702.Google Scholar
  15. 15.
    Hampel, G., Pundt, A. and Hesse, J. (1992) Crystallization of Fe73.5Cu1Nb3Si13.5B9: structure and kinetics examined by x-ray diffraction and Mossbauer effect spectroscopy, J. Phys.: Condens. Matter 4, 3195–3214.CrossRefGoogle Scholar
  16. 16.
    Rixecker, G., Schaaf, P. and Gonser, U. (1992) Crystallization behaviour of amorphous Fe73.5Cu1Nb3Si13.5B9, J. Phys.: Condens. Matter 4, 10295–10310.CrossRefGoogle Scholar
  17. 17.
    Gupta, A., Bhagat, N. and Principi, G. (1995) Mössbauer study of magnetic ineractions in nanocrystalline Fe73.5Cu1Nb3Si16.5B6, J. Phys.: Condens. Matter 7, 2237–2248.CrossRefGoogle Scholar
  18. 18.
    Pradell, T., Clavaguera, N. Zhu, J. and Clavaguera-Mora, M. T. (1995) A Mössbauer study of the nanocrystallization process in Fe73.5CuNb3Si17.5B5 alloy, J. Phys.: Condens. Matter 7, 4129–4143.CrossRefGoogle Scholar
  19. 19.
    Zemčik, T. (1993) Phase analysis of amorphous and nanocrystalline FeCuNbSiB alloys by 57Fe Mössbauer spectroscopy, Key. Eng. Mater. 81-3, 261–266.Google Scholar
  20. 20.
    Knobel, M., Sato Turtelli, R. and Rechenberg, H. R. (1992) Compositional evolution and magnetic properties of nanocrystalline Fe73.5CuNb3Si17.5B5, J. Appl. Phys. 71, 6008–6012.CrossRefGoogle Scholar
  21. 21.
    Randrianantoandro, N., Grenèche, J. M., Jędrika, E., Ślawska-Waniewska, A. and Lachowicz, H. K. (1995) Nanocrystallized Fe-based metglasses investigated by Mössier spectrometry, Mater Sci Forum 179-181, 545–550.CrossRefGoogle Scholar
  22. 22.
    Randrianantoandro, N., Ślawska-Waniewska, A. and Grenèche, J. M. (1997) Magnetic interactions of nanocrystallized Fe-Cr amorphous alloys, Phys. Rev. B 56, 10797–10800.CrossRefGoogle Scholar
  23. 23.
    Borrego, J. M., Peña-Rodriguez, V. A. and Conde, A. (1997) Mössbauer study of the nanocrystallization of the amorphous System Fe73.5Si13.5B9Cu1Nb1X2 with X = Nb, Mo, V and Zr, Hyperfine Interactions 110, 1–6.CrossRefGoogle Scholar
  24. 24.
    Borrego, J. M., Conde, A., Peña-Rodriguez, V. A. and Grenèche, J. M. (2000) A fitting procedure to describe Mossbauer spectra of FINEMET-type nanocrystalline alloys, Hyperfine Interactions 131, 67–82.CrossRefGoogle Scholar
  25. 25.
    Borrego, J. M., Conde, C. F., Conde, A., Peña-Rodriguez, V. A. and Grenèche, J. M. (2000) Devitrification process of FeSiBCuNbX nanocrystalline alloys: Mössbauer study of the intergranular phase, J. Phys.: Condens. Matter 12, 8089–8100.CrossRefGoogle Scholar
  26. 26.
    Brovko, I., Petrovič, P., Zatroch, M. and Konč, M. (1993) Crystallization of the FeNbCu(Au,Ag,Pd,Pt,Mn)SiB alloys investigated by X-ray and by Mössbauer spectroscopy, Key. Eng. Mater. 81-82, 183–188.CrossRefGoogle Scholar
  27. 27.
    Gorria, P., Orúe, I., Plazaola, F., Fernández-Gubieda, M. L. and Barandiarán, J. M. (1993) Magnetic and Mössbauer study of amorphous and nanocrystalline Fe86Zr7Cu1B6 alloys IEEE Trans. Magn. 29, 2682–2684.CrossRefGoogle Scholar
  28. 28.
    Navarro, I., Hernando, A., Vázquez, M. and Yu Seong-Cho (1995) Mössbauer spectroscopy in nanocrystalline Fe88Zr7B4Cu1, J. Magn. Magn. Mater. 145, 313318.CrossRefGoogle Scholar
  29. 29.
    Graf, T., Kopcewicz, M. and Hesse, J. (1995) Mössbauer studies of radio frequency induced effects in nano-and microcrystalline FINEMET, NanoStructured Mater 6, 937–940.CrossRefGoogle Scholar
  30. 30.
    Ciurzyńska, W. H., Varga, L. K., Olsewski, J., Zbroszczyk, J. and Hasiak, M. (2000) Mössbauer studies and some magnetic properties of amorphous and nanocrystalline Fe87-xZr7B6Cux alloys, J. Magn. Magn. Mat. 208, 61–68.CrossRefGoogle Scholar
  31. 31.
    Zbroszczyk, J., Fukunaga, H., Olsewski, J., Ciurzyńska, W. H., Hasiak, M. and Błachowicz, A. (2000) Mössbauer and magnetic studies of amorphous and nanocrystalline Fe85.4Zr6.8-xNbxB6.8Cu1 (x = 0, 1, 2) alloys, J. Magn. Magn. Mat. 215-216, 419–421.CrossRefGoogle Scholar
  32. 32.
    Kopcewicz, M. (1999) Mössbauer study of nanocrystalline alloys, Acta Phys. Pol. A 96, 49–68.Google Scholar
  33. 33.
    Kopcewicz, M., Grabias, A. and Idzikowski, B. (1999) Influence of the alloy composition on the magnetic properties of nanocrystalline Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo), in: Mat. Res. Soc. Symp. Proc., Vol. 577, Materials Research Society, pp. 487-492.Google Scholar
  34. 34.
    Suzuki, K., Cadogan, J. M., Sahajwalla, V., Inoue, A. and Masumoto, T. (1996) Mössbauer study of amorphous and nanocrystalline Fe-Nb-B alloys, Mater. Sci. Forum 225-227, 701–712.CrossRefGoogle Scholar
  35. 35.
    Suzuki, K., Cadogan, J. M., Sahajwalla, V., Inoue, A. and Masumoto, T. (1997) The role of alloying elements in Cu-free nanocrystalline Fe-Nb-B soft magnetic alloys, Mater. Sci. Eng. A 226-228, 554–558.CrossRefGoogle Scholar
  36. 36.
    Suzuki, K. and Cadogan, J. M. (1998) Random magnetocrystalline anisotropy in two-phase nanocrystalline systems, Phys. Rev. B 58, 2730–2739.CrossRefGoogle Scholar
  37. 37.
    Suzuki, K. and Cadogan, J. M. (1999) The effect of the spontaneous magnetization in the grain boundary region on the magnetic softness of nanocrystalline alloys, J. Appl. Phys. 85, 4400–4402.CrossRefGoogle Scholar
  38. 38.
    Suzuki, K. and Cadogan, J. M. (2000) Effect of Fe-exchange-field penetration on the residual amorphous phase in nanocrystalline Fe92Zr8, J. Appl. Phys. 87, 7097–7099.CrossRefGoogle Scholar
  39. 39.
    Kemény, T., Kaptás, D., Balogh, J., Kiss, L. F., Pusztai, T. and Vincze, I. (1999) Microscopic study of the magnetic coupling in a nanocrystalline soft magnet, J. Phys.: Condens. Matter 11, 2841–2847.CrossRefGoogle Scholar
  40. 40.
    Kaptás, D., Kemény, T., Balogh, J., Bujdosó, L., Kiss, L. F., Pusztai, T. and Vincze, I. (1999) J. Phys.: Condens. Matter 11 L179–L185.CrossRefGoogle Scholar
  41. 41.
    Balogh, J., Bujdosó, L., Kaptás, D., Kemény, T., Vincze, I., Szabó, S. and Beke, D. L. (2000) Phys. Rev. B 61, 4109–4116.CrossRefGoogle Scholar
  42. 42.
    Miglierini, M. and Grenèche, J. M. (1997) Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: I. The fitting model for the Mössbauer spectra, J. Phys.: Condens. Matter 9, 2303–2319.CrossRefGoogle Scholar
  43. 43.
    Grabias, A. and Kopcewicz, M. (1998) Crystallization of the amorphous Fe81Zr7B12 alloy inuced by short time annealing, Mater. Sci. Forum 269-272, 725–730.CrossRefGoogle Scholar
  44. 44.
    Grabias, A. and Kopcewicz, M. (1999) Transmission and conversion electron Mössbauer study of crystallization of amorphous FeZrB alloys, Acta Phys. Pol. A 96, 123–130.Google Scholar
  45. 45.
    Garitaonandia, J. S., Schmoll, D. S. and Barandiarán, J. M. (1998) Model of exchange-field penetration in nanocrystalline Fe87Zr6B6Cu alloys from magnetic and Mössbauer studies, Phys. Rev. B58, 12147–12158.Google Scholar
  46. 46.
    Miglierini, M., Škorvánek, I. and Grenèche, J. M. (1998) Microstructure and Hyperfine Interactions of the Fe73.5Nb4.5Cr5CuB16 Nanocrystalline Alloys: Mössbauer Effect Temperature Measurements, J. Phys.: Condens. Mater 10, 3159–3176.CrossRefGoogle Scholar
  47. 47.
    Miglierini, M. and Grenèche, J. M. (1998) Methodology of Interfacial Regions in FeMCuB-type Nanocrystals, Hyperfine Inter. 113, 375–382.CrossRefGoogle Scholar
  48. 48.
    Chuev, M., Hupe, O., Bremers, H., Hesse, J. and Afanas’ev, A. M. (2000) A novel method for evaluation of complex Mössbauer spectra demonstrated on nanostructures ferromagnetic FeCuNbB alloys, Hyperfine Ineractions 126, 407–410.CrossRefGoogle Scholar
  49. 49.
    Hupe, O., Bremers, H., Hesse, J., Afanas’ev, A. M. and Chuev, M. A. (1999) Structural and magnetic information about a nanostructured ferromagnetic FeCuNbB alloy by novel model independent evaluation of Mössbauer spectra, NanoStruct. Mat. 12, 581–584.CrossRefGoogle Scholar
  50. 50.
    Hupe, O., Chuev, M. A., Bremers, H., Hesse, J. and Afanas’ev, A. M. (1999) Magnetic properties of nanostructured ferromagnetic FeCuNbB alloys revealed by a novel method for evaluating complex Mössbauer spectra, J. Phys.: Condens. Matter 11, 10545–10556CrossRefGoogle Scholar
  51. 51.
    Grenèche, J. M. and Ślawska-Waniewska, A. (2000) About the interfacial zone in nanocrystalline alloys, J. Magn. Magn. Mat. 215-216, 264–267.CrossRefGoogle Scholar
  52. 52.
    Grenèche, J. M. and Miglierini, M. (1999) Mössbauer spectrometry applied to iron-based nanocrystalline alloys I. High temperature studies, in M. Miglierini and D. Petridis (eds.), Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht, pp. 243-256.Google Scholar
  53. 53.
    Hernando, A. and Kulik, T. (1994) Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals, Phys. Rev. B49, 7064–7067.Google Scholar
  54. 54.
    Navarro, I., Ortuño, M. and Hernando, A. (1996) Ferromagnetic interactions in nanostructured systems with two different Curie temperatures, Phys. Rev. B53, 11656–11660.Google Scholar
  55. 55.
    Miglierini, M. and Grenèche, J. M. (1997) Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: II. The topography of hyperfine ineractions in Fe(Cu)ZrB alloys, J. Phys.: Condens. Matter 9, 2321–2347.CrossRefGoogle Scholar
  56. 56.
    Garitaonandia, J. S., Gorria, P., Fernández Barquín, L. and Barandiarán, J. M. (2000) Low temperature magnetic properties of Fe nanograms in an amorphous Fe-Zr-B matrix, Phys. Rev. B61, 6150–6155.Google Scholar
  57. 57.
    Olszewski, J., Varga, L. K., Zbroszczyk, J., Ciurzyńska, W. H., Hasiak, M. and Blachowicz, A. (2000) Magnetic behaviour of amorphous and nanocrystalline Fe92-xZr7Cu1Bx (x = 2 or 6) alloys, J. Magn. Magn. Mat. 215-216, 416–418.CrossRefGoogle Scholar
  58. 58.
    Kemény, T., Káptis, D., Kiss, L. F., Bujdosó, L., Gubicza, J., Ungár, T., and Vincze, I. (2000) Structure and magnetic properties of nanocrystalline (Fe1-xCox)90Zr7B2Cu1 (0≤x≤0.6), Appl. Phys. Lett. 76, 2110–2112.CrossRefGoogle Scholar
  59. 59.
    Hasiak, M., Fukunaga, H., Ciurzyńska, W. H. and Yamashiro, Y. (2001) Effect of Co addition on microstructure and magnetic properties of (Fe86-xCox)-Zr-B alloys, Scipta mater. 44, 1465–1469.CrossRefGoogle Scholar
  60. 60.
    Miglierini, M. and Grenèche, J. M. (1999) Hyperfine fields of amorphous residual and interface phases in FeMCuB nanocrystalline alloys: a Mössbauer effect study, Hyperfine Interactions 120/121, 297–301.CrossRefGoogle Scholar
  61. 61.
    Miglierini, M. and Grenèche, J. M. (1999) Temperature dependence of amorphous and interface phases in the Fe80Nb7Cu1B12 nanocrystalloiine alloys, Hyperfine Interactions 111, 121–128.CrossRefGoogle Scholar
  62. 62.
    Škorvanek, L, Kováč, J. and Grenèche, J. M. (2000) Structural an magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys, J. Phys.: Condens. Matter 12, 9085–9093.CrossRefGoogle Scholar
  63. 63.
    Miglierini, M., Grenèche, J. M. and Idzikowski, B. (2001) Temperature Mössbauer effect study of nanocrystalline FeMCuB alloys, Mater. Sci. Eng. A304-306, 937–940.Google Scholar
  64. 64.
    Kopcewicz, M., Grabias, A., Nowicki, P. and Williamson, D. L. (1996) Mössbauer and X-ray study of the structure and magnetic properties of amorphous and nanocrystalline Fe81Zr7B12 and Fe79Zr7B12Cu2 alloys, J. Appl. Phys. 79, 993–1003.CrossRefGoogle Scholar
  65. 65.
    Kopcewicz, M., Grabias, A. and Williamson, D. L. (1997) Magnetism and nanostructure of Fe93-x-yZr7BxCuy alloys, J. Appl. Phys. 82, 1747–1758.CrossRefGoogle Scholar
  66. 66.
    Kopcewicz, M. and Grabias, A. (1996) Mössbauer study of the surface crystallization of the amorphous and nanocrystalline Fe81Zr7B12 alloy, J. Appl. Phys. 80, 3422–3425.CrossRefGoogle Scholar
  67. 67.
    Grabias, A., Kopcewicz, M. and Idzikowski, B. (1999) Surface analysis of the nanocrystalline Fe-based alloys by conversion electron Mössbauer spectroscopy, in: Mat. Res. Soc. Symp. Proc., Vol. 577, Materials Research Society, pp. 543-548.Google Scholar
  68. 68.
    Bibicu, I., Garitaonandia, J. S., Plazaola, F. and Apinaniz, E. (2001) X-ray diffraction, transmission Mössbauer spectrometry and conversion electron Mössbauer spectrometry studies of the Fe87Zr6B6Cu1 nanocrystallization process, J. Non-Crystal. Solids 287, 277-281.Google Scholar
  69. 69.
    Miglierini, M. and Seberíni, M. (2002) Magnetic microstructue of nanocrystalline Fe80Nb7Cu1B12 investigated by Mdssbauer spectrometry, phys. stat. sol. (a) 189, 351–355.CrossRefGoogle Scholar
  70. 70.
    Grabias, A., Kopcewicz, M. and Idzikowski, B. (1999) Mössbauer study of the nanocrystalline Fe80T17B12Cu1 alloy, NanoStruct. Mater. 12, 899–902.CrossRefGoogle Scholar
  71. 71.
    Grabias, A., Kopcewicz, M. and Idzikowski, B. (2000) On the formation of the nanostructure in Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo) alloys, Hyperfine Interactions 126, 21–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Marcel Miglierini
    • 1
  1. 1.Department of Nuclear Physics and TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations