Skip to main content

Characterization of Nanocrystalline Alloys by Mössbauer Effect Techniques

  • Conference paper
Nanostructures: Synthesis, Functional Properties and Applications

Part of the book series: NATO Science Series ((NAII,volume 128))

  • 503 Accesses

Abstract

The use of a non-destructive nuclear-physical method, namely 57Fe Mössbauer spectroscopy, is discussed for the investigation of magnetic and structural arrangement of Fe-based nanocrystalline alloys. Transmission Mössbauer spectroscopy (TMS) as well as conversion electron Mössbauer spectroscopy (CEMS) are reviewed using FINEMET- and NANOPERM-type nanocrystalline alloys as examples. They consist of nanocrystalline grains embedded within a residual amorphous matrix thus exhibiting a two-phase magnetic behaviour. Hyperfine field distributions derived from Mössbauer spectra provide information about the structure and magnetic states of atoms located in different structural positions. Prior to this, basic features of Mössbauer spectra are briefly summarised. Influence of composition, content of nanograms, and interactions among them are demonstrated as a function of annealing temperature and measuring temperature for bulk (TMS) and surface (CEMS) of the investigated nanocrystalline alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshizawa, Y., Oguma, S. and Yamauchi, K (1988) New-Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64, 6044–6046.

    Article  CAS  Google Scholar 

  2. Hernando, A., Vázquez, M. and Páramo, D. (1998) Applications of amorphous and nanocrystalline magnetic materials as sensing elements, Mater. Sci. Forum 269-272, 1033–1042.

    Article  CAS  Google Scholar 

  3. Herzer, G. (1993) Nanocrystalline soft magnetic materials, Phys. Scr. T49, 307–314.

    Article  Google Scholar 

  4. Miglierini, M., Kopcewicz, M., Idzikowski, B., Horváth, Z. E., Grabias, A., Škorvánek, I., Dłużewski, P. and Daróczi, Cs. S. (1999) Structure, hyperfine interactions and magnetic behavior of amorphous and nanocrystalline Fe80M7B12Cu1 (M = Mo, Nb, Ti) alloys, J. Appl. Phys. 85, 1014–1025.

    Article  CAS  Google Scholar 

  5. G. J. Long (ed.), (1984, 1987, 1989), in Mössbauer Spectroscopy Applied to Inorganic Chemistry Vol 1, 2, and 3, Plenum Press, New-York. G. J. Long and F Grandjean (eds.), (1993,1996), in Mössbauer Spectroscopy Applied to Magnetism and Materials Science Vol 1, 2, Plenum Press, New-York. M. Miglierini and D. Petridis (eds.), (1999), in Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  6. Mössbauer, R. L. (1958) Kernresonanzfluoreszenz von Gammastrahlung in Ir191, Z. Phys. 151, 124–143.

    Article  Google Scholar 

  7. Mössbauer, R. L. (1958) Kernresonanzeabsorption von Gammastrahlung in Ir191, Naturwissenschaften 45, 538–539.

    Article  Google Scholar 

  8. Campbell, S. J., Aubertin, F. (1989) Evaluation of distributed hyperfine parameters, in G. J. Long and F Grandjean (eds.), Mössbauer Spectroscopy Applied to Inorganic Chemistry Vol 3, Plenum Press, New-York, pp. 183-242.

    Google Scholar 

  9. Gonser, U., Limbach, C. T. and Aubertin, F. (1988) Mössbauer spctroscopy in amorphous metals: failures and successes, J. Non-Cryst. Solids 106, 395–398.

    Article  CAS  Google Scholar 

  10. Suzuki, K., Kataoka, N., Inoue, A., Makino, A. and Masumoto, T. (1990) High saturation magnetization and soft magnetic properties of FeZrB alloys with ultrafine structure, Mater. Trans. JIM 31, 743–746.

    CAS  Google Scholar 

  11. Miglierini, M. (1994) Mössbauer-effect study of the hyperfine field distributions in the residual amorphous phase of Fe-Cu-Nb-Si-B nanocrystalline alloys, J. Phys.: Condens. Matter 6, 1431–1438.

    Article  CAS  Google Scholar 

  12. Greneche, J. M. (1997) Nanocrystalline iron-based alloys investigated by Mössbauer spectrometry, Hyperfine Interactions 110, 81–91.

    Article  CAS  Google Scholar 

  13. Miglierini, M. and Grenèche, J. M. (1999) Mössbauer spectrometry applied to iron-based nanocrystalline alloys II. Hyperfine fields of amorphous and interfacial regions, in M. Miglierini and D. Petridis (eds.), Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht, pp. 257-272.

    Chapter  Google Scholar 

  14. Jiang, J., Aubertin, F., Gonser, U. and Hilzinger, H. R. (1991) Mössbauer spectroscopy and X-ray diffraction studies of the crystallization in the amorphous Fe73.5Cu1Nb3Si13.5B9, Z Metallk. 82, 698–702.

    CAS  Google Scholar 

  15. Hampel, G., Pundt, A. and Hesse, J. (1992) Crystallization of Fe73.5Cu1Nb3Si13.5B9: structure and kinetics examined by x-ray diffraction and Mossbauer effect spectroscopy, J. Phys.: Condens. Matter 4, 3195–3214.

    Article  CAS  Google Scholar 

  16. Rixecker, G., Schaaf, P. and Gonser, U. (1992) Crystallization behaviour of amorphous Fe73.5Cu1Nb3Si13.5B9, J. Phys.: Condens. Matter 4, 10295–10310.

    Article  CAS  Google Scholar 

  17. Gupta, A., Bhagat, N. and Principi, G. (1995) Mössbauer study of magnetic ineractions in nanocrystalline Fe73.5Cu1Nb3Si16.5B6, J. Phys.: Condens. Matter 7, 2237–2248.

    Article  CAS  Google Scholar 

  18. Pradell, T., Clavaguera, N. Zhu, J. and Clavaguera-Mora, M. T. (1995) A Mössbauer study of the nanocrystallization process in Fe73.5CuNb3Si17.5B5 alloy, J. Phys.: Condens. Matter 7, 4129–4143.

    Article  CAS  Google Scholar 

  19. Zemčik, T. (1993) Phase analysis of amorphous and nanocrystalline FeCuNbSiB alloys by 57Fe Mössbauer spectroscopy, Key. Eng. Mater. 81-3, 261–266.

    Google Scholar 

  20. Knobel, M., Sato Turtelli, R. and Rechenberg, H. R. (1992) Compositional evolution and magnetic properties of nanocrystalline Fe73.5CuNb3Si17.5B5, J. Appl. Phys. 71, 6008–6012.

    Article  CAS  Google Scholar 

  21. Randrianantoandro, N., Grenèche, J. M., Jędrika, E., Ślawska-Waniewska, A. and Lachowicz, H. K. (1995) Nanocrystallized Fe-based metglasses investigated by Mössier spectrometry, Mater Sci Forum 179-181, 545–550.

    Article  CAS  Google Scholar 

  22. Randrianantoandro, N., Ślawska-Waniewska, A. and Grenèche, J. M. (1997) Magnetic interactions of nanocrystallized Fe-Cr amorphous alloys, Phys. Rev. B 56, 10797–10800.

    Article  CAS  Google Scholar 

  23. Borrego, J. M., Peña-Rodriguez, V. A. and Conde, A. (1997) Mössbauer study of the nanocrystallization of the amorphous System Fe73.5Si13.5B9Cu1Nb1X2 with X = Nb, Mo, V and Zr, Hyperfine Interactions 110, 1–6.

    Article  CAS  Google Scholar 

  24. Borrego, J. M., Conde, A., Peña-Rodriguez, V. A. and Grenèche, J. M. (2000) A fitting procedure to describe Mossbauer spectra of FINEMET-type nanocrystalline alloys, Hyperfine Interactions 131, 67–82.

    Article  CAS  Google Scholar 

  25. Borrego, J. M., Conde, C. F., Conde, A., Peña-Rodriguez, V. A. and Grenèche, J. M. (2000) Devitrification process of FeSiBCuNbX nanocrystalline alloys: Mössbauer study of the intergranular phase, J. Phys.: Condens. Matter 12, 8089–8100.

    Article  CAS  Google Scholar 

  26. Brovko, I., Petrovič, P., Zatroch, M. and Konč, M. (1993) Crystallization of the FeNbCu(Au,Ag,Pd,Pt,Mn)SiB alloys investigated by X-ray and by Mössbauer spectroscopy, Key. Eng. Mater. 81-82, 183–188.

    Article  Google Scholar 

  27. Gorria, P., Orúe, I., Plazaola, F., Fernández-Gubieda, M. L. and Barandiarán, J. M. (1993) Magnetic and Mössbauer study of amorphous and nanocrystalline Fe86Zr7Cu1B6 alloys IEEE Trans. Magn. 29, 2682–2684.

    Article  CAS  Google Scholar 

  28. Navarro, I., Hernando, A., Vázquez, M. and Yu Seong-Cho (1995) Mössbauer spectroscopy in nanocrystalline Fe88Zr7B4Cu1, J. Magn. Magn. Mater. 145, 313318.

    Article  Google Scholar 

  29. Graf, T., Kopcewicz, M. and Hesse, J. (1995) Mössbauer studies of radio frequency induced effects in nano-and microcrystalline FINEMET, NanoStructured Mater 6, 937–940.

    Article  Google Scholar 

  30. Ciurzyńska, W. H., Varga, L. K., Olsewski, J., Zbroszczyk, J. and Hasiak, M. (2000) Mössbauer studies and some magnetic properties of amorphous and nanocrystalline Fe87-xZr7B6Cux alloys, J. Magn. Magn. Mat. 208, 61–68.

    Article  Google Scholar 

  31. Zbroszczyk, J., Fukunaga, H., Olsewski, J., Ciurzyńska, W. H., Hasiak, M. and Błachowicz, A. (2000) Mössbauer and magnetic studies of amorphous and nanocrystalline Fe85.4Zr6.8-xNbxB6.8Cu1 (x = 0, 1, 2) alloys, J. Magn. Magn. Mat. 215-216, 419–421.

    Article  CAS  Google Scholar 

  32. Kopcewicz, M. (1999) Mössbauer study of nanocrystalline alloys, Acta Phys. Pol. A 96, 49–68.

    CAS  Google Scholar 

  33. Kopcewicz, M., Grabias, A. and Idzikowski, B. (1999) Influence of the alloy composition on the magnetic properties of nanocrystalline Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo), in: Mat. Res. Soc. Symp. Proc., Vol. 577, Materials Research Society, pp. 487-492.

    Google Scholar 

  34. Suzuki, K., Cadogan, J. M., Sahajwalla, V., Inoue, A. and Masumoto, T. (1996) Mössbauer study of amorphous and nanocrystalline Fe-Nb-B alloys, Mater. Sci. Forum 225-227, 701–712.

    Article  Google Scholar 

  35. Suzuki, K., Cadogan, J. M., Sahajwalla, V., Inoue, A. and Masumoto, T. (1997) The role of alloying elements in Cu-free nanocrystalline Fe-Nb-B soft magnetic alloys, Mater. Sci. Eng. A 226-228, 554–558.

    Article  Google Scholar 

  36. Suzuki, K. and Cadogan, J. M. (1998) Random magnetocrystalline anisotropy in two-phase nanocrystalline systems, Phys. Rev. B 58, 2730–2739.

    Article  CAS  Google Scholar 

  37. Suzuki, K. and Cadogan, J. M. (1999) The effect of the spontaneous magnetization in the grain boundary region on the magnetic softness of nanocrystalline alloys, J. Appl. Phys. 85, 4400–4402.

    Article  CAS  Google Scholar 

  38. Suzuki, K. and Cadogan, J. M. (2000) Effect of Fe-exchange-field penetration on the residual amorphous phase in nanocrystalline Fe92Zr8, J. Appl. Phys. 87, 7097–7099.

    Article  CAS  Google Scholar 

  39. Kemény, T., Kaptás, D., Balogh, J., Kiss, L. F., Pusztai, T. and Vincze, I. (1999) Microscopic study of the magnetic coupling in a nanocrystalline soft magnet, J. Phys.: Condens. Matter 11, 2841–2847.

    Article  Google Scholar 

  40. Kaptás, D., Kemény, T., Balogh, J., Bujdosó, L., Kiss, L. F., Pusztai, T. and Vincze, I. (1999) J. Phys.: Condens. Matter 11 L179–L185.

    Article  Google Scholar 

  41. Balogh, J., Bujdosó, L., Kaptás, D., Kemény, T., Vincze, I., Szabó, S. and Beke, D. L. (2000) Phys. Rev. B 61, 4109–4116.

    Article  CAS  Google Scholar 

  42. Miglierini, M. and Grenèche, J. M. (1997) Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: I. The fitting model for the Mössbauer spectra, J. Phys.: Condens. Matter 9, 2303–2319.

    Article  CAS  Google Scholar 

  43. Grabias, A. and Kopcewicz, M. (1998) Crystallization of the amorphous Fe81Zr7B12 alloy inuced by short time annealing, Mater. Sci. Forum 269-272, 725–730.

    Article  CAS  Google Scholar 

  44. Grabias, A. and Kopcewicz, M. (1999) Transmission and conversion electron Mössbauer study of crystallization of amorphous FeZrB alloys, Acta Phys. Pol. A 96, 123–130.

    CAS  Google Scholar 

  45. Garitaonandia, J. S., Schmoll, D. S. and Barandiarán, J. M. (1998) Model of exchange-field penetration in nanocrystalline Fe87Zr6B6Cu alloys from magnetic and Mössbauer studies, Phys. Rev. B58, 12147–12158.

    Google Scholar 

  46. Miglierini, M., Škorvánek, I. and Grenèche, J. M. (1998) Microstructure and Hyperfine Interactions of the Fe73.5Nb4.5Cr5CuB16 Nanocrystalline Alloys: Mössbauer Effect Temperature Measurements, J. Phys.: Condens. Mater 10, 3159–3176.

    Article  CAS  Google Scholar 

  47. Miglierini, M. and Grenèche, J. M. (1998) Methodology of Interfacial Regions in FeMCuB-type Nanocrystals, Hyperfine Inter. 113, 375–382.

    Article  CAS  Google Scholar 

  48. Chuev, M., Hupe, O., Bremers, H., Hesse, J. and Afanas’ev, A. M. (2000) A novel method for evaluation of complex Mössbauer spectra demonstrated on nanostructures ferromagnetic FeCuNbB alloys, Hyperfine Ineractions 126, 407–410.

    Article  CAS  Google Scholar 

  49. Hupe, O., Bremers, H., Hesse, J., Afanas’ev, A. M. and Chuev, M. A. (1999) Structural and magnetic information about a nanostructured ferromagnetic FeCuNbB alloy by novel model independent evaluation of Mössbauer spectra, NanoStruct. Mat. 12, 581–584.

    Article  Google Scholar 

  50. Hupe, O., Chuev, M. A., Bremers, H., Hesse, J. and Afanas’ev, A. M. (1999) Magnetic properties of nanostructured ferromagnetic FeCuNbB alloys revealed by a novel method for evaluating complex Mössbauer spectra, J. Phys.: Condens. Matter 11, 10545–10556

    Article  CAS  Google Scholar 

  51. Grenèche, J. M. and Ślawska-Waniewska, A. (2000) About the interfacial zone in nanocrystalline alloys, J. Magn. Magn. Mat. 215-216, 264–267.

    Article  Google Scholar 

  52. Grenèche, J. M. and Miglierini, M. (1999) Mössbauer spectrometry applied to iron-based nanocrystalline alloys I. High temperature studies, in M. Miglierini and D. Petridis (eds.), Mössbauer Spectroscopy in Materials Science, Kluwer Academic Publishers, Dordrecht, pp. 243-256.

    Google Scholar 

  53. Hernando, A. and Kulik, T. (1994) Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals, Phys. Rev. B49, 7064–7067.

    Google Scholar 

  54. Navarro, I., Ortuño, M. and Hernando, A. (1996) Ferromagnetic interactions in nanostructured systems with two different Curie temperatures, Phys. Rev. B53, 11656–11660.

    Google Scholar 

  55. Miglierini, M. and Grenèche, J. M. (1997) Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: II. The topography of hyperfine ineractions in Fe(Cu)ZrB alloys, J. Phys.: Condens. Matter 9, 2321–2347.

    Article  CAS  Google Scholar 

  56. Garitaonandia, J. S., Gorria, P., Fernández Barquín, L. and Barandiarán, J. M. (2000) Low temperature magnetic properties of Fe nanograms in an amorphous Fe-Zr-B matrix, Phys. Rev. B61, 6150–6155.

    Google Scholar 

  57. Olszewski, J., Varga, L. K., Zbroszczyk, J., Ciurzyńska, W. H., Hasiak, M. and Blachowicz, A. (2000) Magnetic behaviour of amorphous and nanocrystalline Fe92-xZr7Cu1Bx (x = 2 or 6) alloys, J. Magn. Magn. Mat. 215-216, 416–418.

    Article  CAS  Google Scholar 

  58. Kemény, T., Káptis, D., Kiss, L. F., Bujdosó, L., Gubicza, J., Ungár, T., and Vincze, I. (2000) Structure and magnetic properties of nanocrystalline (Fe1-xCox)90Zr7B2Cu1 (0≤x≤0.6), Appl. Phys. Lett. 76, 2110–2112.

    Article  Google Scholar 

  59. Hasiak, M., Fukunaga, H., Ciurzyńska, W. H. and Yamashiro, Y. (2001) Effect of Co addition on microstructure and magnetic properties of (Fe86-xCox)-Zr-B alloys, Scipta mater. 44, 1465–1469.

    Article  CAS  Google Scholar 

  60. Miglierini, M. and Grenèche, J. M. (1999) Hyperfine fields of amorphous residual and interface phases in FeMCuB nanocrystalline alloys: a Mössbauer effect study, Hyperfine Interactions 120/121, 297–301.

    Article  CAS  Google Scholar 

  61. Miglierini, M. and Grenèche, J. M. (1999) Temperature dependence of amorphous and interface phases in the Fe80Nb7Cu1B12 nanocrystalloiine alloys, Hyperfine Interactions 111, 121–128.

    Article  Google Scholar 

  62. Škorvanek, L, Kováč, J. and Grenèche, J. M. (2000) Structural an magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys, J. Phys.: Condens. Matter 12, 9085–9093.

    Article  Google Scholar 

  63. Miglierini, M., Grenèche, J. M. and Idzikowski, B. (2001) Temperature Mössbauer effect study of nanocrystalline FeMCuB alloys, Mater. Sci. Eng. A304-306, 937–940.

    CAS  Google Scholar 

  64. Kopcewicz, M., Grabias, A., Nowicki, P. and Williamson, D. L. (1996) Mössbauer and X-ray study of the structure and magnetic properties of amorphous and nanocrystalline Fe81Zr7B12 and Fe79Zr7B12Cu2 alloys, J. Appl. Phys. 79, 993–1003.

    Article  CAS  Google Scholar 

  65. Kopcewicz, M., Grabias, A. and Williamson, D. L. (1997) Magnetism and nanostructure of Fe93-x-yZr7BxCuy alloys, J. Appl. Phys. 82, 1747–1758.

    Article  CAS  Google Scholar 

  66. Kopcewicz, M. and Grabias, A. (1996) Mössbauer study of the surface crystallization of the amorphous and nanocrystalline Fe81Zr7B12 alloy, J. Appl. Phys. 80, 3422–3425.

    Article  CAS  Google Scholar 

  67. Grabias, A., Kopcewicz, M. and Idzikowski, B. (1999) Surface analysis of the nanocrystalline Fe-based alloys by conversion electron Mössbauer spectroscopy, in: Mat. Res. Soc. Symp. Proc., Vol. 577, Materials Research Society, pp. 543-548.

    Google Scholar 

  68. Bibicu, I., Garitaonandia, J. S., Plazaola, F. and Apinaniz, E. (2001) X-ray diffraction, transmission Mössbauer spectrometry and conversion electron Mössbauer spectrometry studies of the Fe87Zr6B6Cu1 nanocrystallization process, J. Non-Crystal. Solids 287, 277-281.

    Google Scholar 

  69. Miglierini, M. and Seberíni, M. (2002) Magnetic microstructue of nanocrystalline Fe80Nb7Cu1B12 investigated by Mdssbauer spectrometry, phys. stat. sol. (a) 189, 351–355.

    Article  CAS  Google Scholar 

  70. Grabias, A., Kopcewicz, M. and Idzikowski, B. (1999) Mössbauer study of the nanocrystalline Fe80T17B12Cu1 alloy, NanoStruct. Mater. 12, 899–902.

    Article  Google Scholar 

  71. Grabias, A., Kopcewicz, M. and Idzikowski, B. (2000) On the formation of the nanostructure in Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo) alloys, Hyperfine Interactions 126, 21–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Miglierini, M. (2003). Characterization of Nanocrystalline Alloys by Mössbauer Effect Techniques. In: Tsakalakos, T., Ovid’ko, I.A., Vasudevan, A.K. (eds) Nanostructures: Synthesis, Functional Properties and Applications. NATO Science Series, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1019-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1019-1_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1753-7

  • Online ISBN: 978-94-007-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics