Particularities of Martensitic Transformations in Nanosructured Fe-Mn System Obtained by Mechanical Alloying

  • L. Yu. Pustov
  • S. D. Kaloshkin
  • E. I. Estrin
  • G. Principi
  • V. V. Tcherdyntsev
  • E. V. Shelekhov
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)

Abstract

Martensitic transformation (MT) in the Fe-rich alloys always attracts much attention. Iron-rich alloys of Fe-Mn system belong to martensitic class. Depending on the Mn content two types of martensite structures b.c.c and/or h.c.p., may be formed through non-diffusional martensitic mechanism upon cooling from the temperature range of f.c.c. phase stability [1]. Only b.c.c. type appears when Mn content is less than 10 %, at higher Mn concentrations h.c.p. martensite exists.

Keywords

Martensitic Transformation Block Size Mechanical Alloy Elemental Powder Mixture Mechanical Alloy Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Houdremont, E. (1956) Handbuch der Soderstahlkunde, Springer-Verlag, BerlinGoogle Scholar
  2. [2]
    Thatnani, N.N., and Meyers, M.A. (1986) Progr. in Mater.Sci. 30, p. 1–20 (Review)CrossRefGoogle Scholar
  3. [3]
    Maki, T., Shimooka, S., and Tamura, I.(1971) The Ms temperature and morphology of martensite in Fe-31 Pet Ni-0.23 Pet C alloy, Metallurgical Transactions 2, 2944–2945CrossRefGoogle Scholar
  4. [4]
    Takaki, S., Nakatsu, H., and Torunaga, Y. (1993) Effects of austenite grain size on ε martensitic transformation in Fe-15 mass%Mn alloy, Materials Transactions JIM 34, 489–495Google Scholar
  5. [5]
    Hayzelden, C., and Cantor, B. (1986) The martensite transformations in Fe-Ni-C, Acta metal. 34, 2, 233–242CrossRefGoogle Scholar
  6. [6]
    Inokiti, Y., and Cantor., B. (1976) Splat-quenched Fe-Ni alloys, Scripta Met. 10, 655–659CrossRefGoogle Scholar
  7. [7]
    Cech, R.E., and Turnbull, D., (1956) Heterogeneous nucleation of the martensite transformation J.Met 8, 2, 124–132Google Scholar
  8. [8]
    Kurt, C. and Schultz, L. (1993) Phase formation and martensitic transformation in mechanically alloyed nanocrystalline Fe-Ni, J. Appl. Phys. 73, 1975–1980.CrossRefGoogle Scholar
  9. [9]
    Kurt, C. and Schultz, L. (1993) Phase formation and martensitic transformation in mechanically alloyed nanocrystalline Fe-Ni, J. Appl. Phys. 73, 6588–6590CrossRefGoogle Scholar
  10. [10]
    Tcherdyntsev, V.V., Kaloshkin, S.D., Tomilin, I.A., Shelekhov, E.V., Baldokhin, Yu.V (1999) Phase Composition and Structure of Fe-Mn Alloys Prepared by Mechanical Alloying from Elemental Powders, Z. Metallkde. 90, 747–752Google Scholar
  11. [11]
    Hong L.B., and Fultz B. (1996) Two-Phase Coexistence in Fe-Ni Alloys Synthezed by Ball Milling, J. Appl. Phys. 79, 3946–3954CrossRefGoogle Scholar
  12. [12]
    Scorzelli R.B. (1997) A Study of Phase Stability in Invar Fe-Ni Alloys Obtained by Non-Conventional Method, Hyp. Int. 110 143–150CrossRefGoogle Scholar
  13. [13]
    Kaloshkin, S.D., Tcherdyntsev, V.V., Baldokhin, Yu.V., Tomilin, I.A., and Shelekhov, E.V.(2001) Mechanically alloyed low-nickel austenite Fe-Ni phase: evidence of single-phase paramagnetic state, J. Non-Crystalline Solids 287, 329–333CrossRefGoogle Scholar
  14. [14]
    Kaloshkin, S.D., Tcherdyntsev, V.V., Baldokhin, Yu.V., Tomilin, I.A., Shelekhov, E.V.(2001) Phase Transformations in Fe-Ni System at Mechanical Alloying and Consequent Annealing of Elemental Powder Mixtures, Physica B. 299, 236–241.CrossRefGoogle Scholar
  15. [15]
    Pustov, L.Yu., Kaloshkin, S.D., Tcherdyntsev, V.V., Tomilin, I.A., Shelekhov, E.V., and Salimon, A.I. (2001) Experimental Measurement and Theoretical Computation of Milling Intensity and Temperature for the Purpose of Mechanical Alloying Kinetics Description, Mater. Sci. Forum. 360-362, 373–378.CrossRefGoogle Scholar
  16. [16]
    Shelekhov, E.V., Tcherdyntsev, V.V., Pustov, L.Yu., Kaloshkin, S.D., and Tomilin, I.A. (2000) Computer simulation of mechanoactivation process in the planetary ball mill: determination of the energy parameters of milling, Mater. Sci. Forum 343-346, p.603–609CrossRefGoogle Scholar
  17. [17]
    Tcherdyntsev, V.V., Pustov, L.Yu., Kaloshkin, S.D., Tomilin, I.A., and Shelekhov, E.V. (2000) Calculation of energy intensity and temperature of mechanoactivation process in planetary ball mill by computer simulation, NATO Science Partnership Sub-series: 3 High Technology 80, p. 139–146Google Scholar
  18. [18]
    Balychev, Yu, M., and Tkachenko, F.K. (1979), Izv. ANSSSR. Metally 3, 169–171Google Scholar
  19. [19]
    Vol, A.E. (1962,) Stroenie i svoistva dvoinykh splavov (Structure and Properties of Binary Systems), Vol. 2, Nauka, MoscowGoogle Scholar
  20. [20]
    Tcherdyntsev V.V., Kaloshkin S.D., Tomilin I.A., and Shelekhov, E.V. (1999) Formation of iron-nickel nanocrystalline alloys by mechanical alloying, Nanostr. Mater. 12, 139–142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. Yu. Pustov
    • 1
  • S. D. Kaloshkin
    • 1
  • E. I. Estrin
    • 2
  • G. Principi
    • 3
  • V. V. Tcherdyntsev
    • 1
  • E. V. Shelekhov
    • 1
  1. 1.Moscow State Institute of Steel and AlloysMoscowRussia
  2. 2.Central Research Inst. for Ferrous MetalurgyMoscowRussia
  3. 3.Settore Materiali and INFM, DIMPadovaItaly

Personalised recommendations