Advertisement

Cluster Structure of the Amorphous State and (NANO)Crystallization of Rapidly Quenched Iron and Cobalt Based Systems

  • Peter Švec
  • Katarina Krištiaková
  • Marian Deanko
Part of the NATO Science Series book series (NAII, volume 128)

Abstract

Micromechanisms and energetics of transitions from metastable to more stable state were investigated in complex metastable disordered systems prepared by rapid quenching from the melt from the viewpoint of spatially (structurally) correlated distribution of transformation rates of individual microprocesses controlling the transition process. Using a novel, model-independent method for determination of continuous distributions of process rates it was possible to obtain information on distributions of true activation energies of these microprocesses. Detailed analysis of subdistributions of microprocesses active at each stage a of transition yielded also the information on temperature dependence of the activation energies.

We have analyzed different nanocrystal-forming iron and cobalt based systems with the focus on the origin of the clustered amorphous state. New information was obtained with respect to the original local ordering of atoms in the amorphous state and its influence on the formation of nanostructures. Additional information was extracted which allowed comparison of the processes in the early stages of nanocrystallization with those activated at the end of this transformation. The origin of distributions of microprocess rates or, alternatively, of activation energies, i. e. dynamically heterogeneous behaviour, is discussed and correlated with the expected clustered structure of the amorphous state, i. e. spatial heterogeneities having distinct ordering within the disordered matrix.

Keywords

Activation Energy Metallic Glass Amorphous State Cluster Structure Transformation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Ediger, Annu. Rev. Phys. Chem. 51 (2000) 99.CrossRefGoogle Scholar
  2. 2.
    P. Hanggi, P. Talkner, M. Borovec, Rev. Mod. Phys. 62 (1990) 251.CrossRefGoogle Scholar
  3. 3.
    R. Bohmer, Curr Opin. Solid St. & Mat. Sci. 3 (1998) 378.CrossRefGoogle Scholar
  4. 4.
    T. Egami, Mat. Res. Bull. 13 (1978) 557.CrossRefGoogle Scholar
  5. 5.
    M. Krajci, J. Hafher, J. Phys.: Condens. Matter 14 (2002) 1865.CrossRefGoogle Scholar
  6. 6.
    J. Qian, A. Heuer, Eur. Phys. J. B 18 (2000) 501.CrossRefGoogle Scholar
  7. 7.
    J. C. Phillips, Rep. Prog. Phys. 59 (1996) 1133.CrossRefGoogle Scholar
  8. 8.
    R. Bohmer, R. V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H. W. Spiess, U. Tracht and M. Wilhelm, J. Non-Cryst. Sol. 235-237 (1998) 1.Google Scholar
  9. 9.
    H. Wendt, R. Richert, Phys. Rev. E 61 (2000) 1722.CrossRefGoogle Scholar
  10. 10.
    A. P. Sokolov, J. Non-Cryst. Sol. 235-237 (1998) 190.CrossRefGoogle Scholar
  11. 11.
    M. Goldstein, J. Chem. Phys. 51 (1969) 3728.CrossRefGoogle Scholar
  12. 12.
    F. H. Stillinger, Science 267 (1995) 1935.CrossRefGoogle Scholar
  13. 13.
    F. Sciortino, W. Kob, P. Tartaglia, Phys. Rev. Lett. 83 (1999) 3214.CrossRefGoogle Scholar
  14. 14.
    D. Kivelson, S. A. Kivelson, X. L. Zhao, Z. Nussinov, G. Tarjus, Physica A 219 (1995) 27.CrossRefGoogle Scholar
  15. 15.
    M. Oguni, J. Non-Cryst. Solids 210 (1997) 171.CrossRefGoogle Scholar
  16. 16.
    Y. Hiwatari, T. Muranaka, J. Non-Cryst. Sol. 235-237 (1998) 19.CrossRefGoogle Scholar
  17. 17.
    P. Duhaj, P. Hanic, phys. stat. sol. (a) 76 (1983) 476.CrossRefGoogle Scholar
  18. 18.
    J. C. Dyre, J. Non-Cryst. Sol. 235-237 (1998) 142.CrossRefGoogle Scholar
  19. 19.
    C. A. Angell, Science 267 (1995) 1924.CrossRefGoogle Scholar
  20. 20.
    R. Leheny, D. Menon, S. R. Nagel, K. Volin, D. L. Price, P. Thiyagarjan, J. Chem. Phys. 105 (1996) 7783.CrossRefGoogle Scholar
  21. 21.
    J. F. Loffler, W. L. Johnson, Mat. Sci. Eng. A 304-306 (2001) 670.CrossRefGoogle Scholar
  22. 22.
    V. Sidorov, P. Popel, M. Calvo-Dahlborg, U. Dahlborg, V. Manov, Mat. Sci. Eng. A 304-306 (2001) 480.CrossRefGoogle Scholar
  23. 23.
    K. Krištiakova, P. Švec, J. Kristiak, P. Duhaj, O. Šauša, Mat. Sci. Eng. A 226-228 (1997) 321.CrossRefGoogle Scholar
  24. 24.
    P. S. Popel, O. A. Chikova, V. M. Matveev, High Temp. Mater. Process 4 (1995) 219.Google Scholar
  25. 25.
    F. H. Stillinger, Science 267 (1995) 1935.CrossRefGoogle Scholar
  26. 26.
    K. Krištiaková, P. Svec, Phys. Rev. B64 (2001) 184202.CrossRefGoogle Scholar
  27. 27.
    P. G. Debedenetti, F. Stillinger, Nature 410 (2001) 259.CrossRefGoogle Scholar
  28. 28.
    B. Predel, Physica B 103 (1981) 113.CrossRefGoogle Scholar
  29. 29.
    A. I. Zaitsev, N. E. Shelkova, Z. Metallkd. 91 (2000) 992.Google Scholar
  30. 30.
    J. W. Christian, The Theory of Transformations in Metals and Alloys, Pt. I, Pergamon Press, Oxford, 1975.Google Scholar
  31. 31.
    T. L. Hill, J. Chem. Phys. 23 (1955) 617.CrossRefGoogle Scholar
  32. 32.
    L. A. Pugnaloni, F. Vericat, J. Chem. Phys. 116 (2002) 1097.CrossRefGoogle Scholar
  33. 33.
    E. Cini, B. Vinet, P. J. Desré, Philos. Mag. A 80 (2000) 955.CrossRefGoogle Scholar
  34. 34.
    P. Duhaj, P. Švec, Key Eng. Mat. 40-41 (1990) 69.CrossRefGoogle Scholar
  35. 35.
    P. Duhaj, P. Švec, Mat. Sci. Eng. A 226-228 (1997) 245.CrossRefGoogle Scholar
  36. 36.
    W. Swiatkowski, J. Non-Cryst. Sol. 262 (2000) 162.CrossRefGoogle Scholar
  37. 37.
    D. Crespo, T. Pradell, M. T. Clavaguera-Mora, N. Clavaguera, Phys. Rev. B 55 (1997) 3435.CrossRefGoogle Scholar
  38. 38.
    K. Hono, D. H. Ping, M. Ohnuma, H. Onodera, Acta Mater. 47 (1999) 997.CrossRefGoogle Scholar
  39. 39.
    H. Kronmüller, W. Frank, A. Horner, Mat. Sci. Eng. A 133 (1991) 410.CrossRefGoogle Scholar
  40. 40.
    P. Duhaj, P. Švec, T. Zemcik, Materials Lett. 9 (1990) 235.CrossRefGoogle Scholar
  41. 41.
    M. Deanko, P. Švec, Proc. APCOM 2002 ed. J. Mudroň, Military Acad, Liptovský Mikuláš, 2002 p. 27.Google Scholar
  42. 42.
    K. Krištiaková, P. Švec, Mat. Sci. Forum 360-362 (2001) 467 / J. Metastab. Nanocryst. Mater. 10 (2001) 467.CrossRefGoogle Scholar
  43. 43.
    K. Krištiaková, P. Švec, Czech J. Phys. 52 (2002) Suppl. A 133.CrossRefGoogle Scholar
  44. 44.
    K. Krištiaková, P. Švec, Mat. Sci. Eng. A304-306 (2001) 343.Google Scholar
  45. 45.
    T. A. Vilgis, J. Phys. C 21 (1988) L299.CrossRefGoogle Scholar
  46. 46.
    H. S. Chen, J. Non-Cryst. Solids 22 (1976) 135.CrossRefGoogle Scholar
  47. 47.
    M. R. Gibbs, J. E. Everts, J. A. Leake, J. Mater. Sci. 18 (1983) 278.CrossRefGoogle Scholar
  48. 48.
    S. Ranganathan, M. von Heimendahl, J. Mater. Sci. 16 (1981) 2401.CrossRefGoogle Scholar
  49. 49.
    K. Krištiaková, J. Krištiak, P. Švec, P. Duhaj, O. Šauša, NanoStructured Materials 6 (1995) 505.CrossRefGoogle Scholar
  50. 50.
    K. Krištiaková, P. Švec, J. Krištiak, O. Šauša, P. Duhaj, J. Non-Cryst. Solids 192 (1995) 277.CrossRefGoogle Scholar
  51. 51.
    K. Krištiaková, J. Krištiak, P. Švec, O. Šauša, P. Duhaj, Mat. Sci. Eng. B 39 (1996) 15.CrossRefGoogle Scholar
  52. 52.
    G. Vlasák, P. Švec, P. Duhaj, Mat. Sci. Eng. A 304-306 (2001) 472.CrossRefGoogle Scholar
  53. 53.
    P. Švec, K. Krištiaková, Mat. Sci. Forum 360-362 (2001) 475–480.CrossRefGoogle Scholar
  54. 54.
    K. Krištiaková, P. Švec, Phys. Rev. B64 (2001) 014204.Google Scholar
  55. 55.
    W. Weiss, H. Alexander, J. Phys. F: Metal Phys. 17 (1983) 1987.Google Scholar
  56. 56.
    K. Krištiaková, P. Švec, Scripta Materialia 44 (2001) 1275.CrossRefGoogle Scholar
  57. 57.
    P. Švec, K. Krištiaková, P. Duhaj, D. Janičkovič, Czech J. Phys. 52 (2002) 145.CrossRefGoogle Scholar
  58. 58.
    Y. Zhang, K. Hono, A. Inoue, A. Makino, T. Sakurai, Acta Mater. 44 (1996) 1497.CrossRefGoogle Scholar
  59. 59.
    D. Ohkubo, H. Kai, D. H. Ping, K. Hono, Y. Hirotsu, Scripta Mater. 44 (2001).Google Scholar
  60. 60.
    K. Krištiaková, P. Švec, D. Janičkovič, Mater. Transaction JIM 42 (2001) 1523.CrossRefGoogle Scholar
  61. 61.
    M. E. McHenry, M. A. Willard, D. E. Laughlin, Prog. Mater. Sci. 44 (1999) 291.CrossRefGoogle Scholar
  62. 62.
    P. Duhaj, P. Švec, J. Sitek, D. Janičkovič, Mat. Sci. Eng. A304-306 (2001) 178–186.Google Scholar
  63. 63.
    J. J. Rayment, O. Ashira, B. Cantor, Proc. Int. Conf. TMS-AIME, Warrendale, 1982, pp. 1385–1389.Google Scholar
  64. 64.
    I. Mat’ko, P. Duhaj, P. Švec, D. Janičkovič, Mat. Sci. Eng. A179/180 (1994) 557.Google Scholar
  65. 65.
    K. Kadau, P. Entel, T. C. Germann, P. S. Lomsdahl, B. L. Holian, J. de Phys. IV 11 (2001) 17.Google Scholar
  66. 66.
    A. Gilbert, W. S. Owen, Acta Metallurgica 10 (1962) 45.CrossRefGoogle Scholar
  67. 67.
    T. Suzuki, M. Shimono, S. Takeno, Phys. Rev. Lett. 82 (1999) 1474.Google Scholar
  68. 68.
    T. Suzuki, M. Shimono, M. Wuttig, Scripta Mater. 44 (2001) 1979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Peter Švec
    • 1
  • Katarina Krištiaková
    • 1
  • Marian Deanko
    • 1
  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations