Heavily Drawn Eutectoid Steel: A Nanostructured Material

  • A. Phelippeau
  • S. Pommier
  • C. Prioul
  • M. Clavel
Part of the NATO Science Series book series (NAII, volume 128)


Heavily drawn eutectoid steel wires are mainly used by the cable industry for applications such as tyre reinforcement, suspension cables or springs. Cables are made by a torsion assembly of wires, which have very high tensile strengths up to 4000 MPa and a level of ductility that has to be sufficient to undergo the torsion assembly process. Needless to say that theses mechanical properties are exceptional, as shows the comparison in figure 1 with those of carbon fibres, well known for their structural reinforcement properties.


Residual Stress Steel Wire Drawing Process Interlamellar Spacing Pearlitic Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Embury, J.D. and Fisher, R.M. (1966) The structure and properties of drawn pearlite, Acta Metallurgica 14, 147–159.CrossRefGoogle Scholar
  2. 2.
    Langford, G. (1970) A study of the deformation of patented steel wire, Metallurgical Transactions 1, 465–477.CrossRefGoogle Scholar
  3. 3.
    Gonzales, B.M., Buono, V.C.T.L., Paula E Silva, E.M., Lima, T.M. and Andrade, M.S. (2000) Atomic force microscopy study of the behaviour of pearlite during drawing of a eutectoid steel, Proceedings of the 70 th annual convention of the Wire Association International, 152–156.Google Scholar
  4. 4.
    Nam, W.J. and Bae, C.M.(1995) Void initiation and microstructural changes during wire drawing of pearlitic steels, Materials Science & Engineering A 203, 278–285.CrossRefGoogle Scholar
  5. 5.
    Langford, G. (1977) Deformation of pearlite, Metallurgical Transactions A 8A, 861–875.CrossRefGoogle Scholar
  6. 6.
    Danoix, F., Julien, D., Sauvage, X. and Copreaux, J. (1998) Direct evidence of cementite dissolution in drawn peerlitic steels observed by tomographic atom probe, Materials Science & Engineering A 250, 8–13.CrossRefGoogle Scholar
  7. 7.
    Hosford, W.F. Jr. (1964) Microstructural changes during deformation of [011] fiber-textured Metals, Transactions of the Metallurgical Society of AIME 230, 12–15.Google Scholar
  8. 8.
    Francois, M. (1991) Determination de contraintes residuelles sur des fils d’acier eutectoïde de faible diamètre par diffraction des rayons X, Ph.D Thesis (ENSAM)Google Scholar
  9. 9.
    Heizmann, J.J., Montesin, T. And Vadon, A. (1994) Circular texture in thin wires, Materials Science Forum 157-162, 701–708.CrossRefGoogle Scholar
  10. 10.
    Heizmann, J.J., Tidu, A., Bolle, B. and Peeters, L. (July 1999), Influence of the crystallographic texture on the torsional behavior of steel cord, Wire Journal International, 150–158.Google Scholar
  11. 11.
    Gridnev, V.N. and Gavrilyuk, V.G. (1982) Cementite decomposition in steel under plastic deformation (a review), Phys. Metals 4(3), 531–551.Google Scholar
  12. 12.
    Araujo, F.G.S., Gonzales, B.M., Cetlin, P.R., Coelho, A.R.Z. and Mansur, R.A. (Feb. 1993) Cementite decomposition and the second stage static strain aging of pearlitic steel wires. Wire Journal International, 191–194.Google Scholar
  13. 13.
    Korznikov, A.V., Ivanisenko, Y.V., Laptionok, D.V., Safarov I.M., Pilyugin, V.P. and Valiev R.Z. (1994) Influence of severe plastic deformation on structure and phase composition of carbon steel, Nanostructured Materials 4, 159–167.CrossRefGoogle Scholar
  14. 14.
    Languillaume, J., Kapelski, G. and Baudelet, B. (1997) Cementite dissolution in heavily cold drawn pearlitic steel wires, Acta Materialia 45(3), 1201–1212.CrossRefGoogle Scholar
  15. 15.
    Hong, M.H., Reynods, W.T., Tarui, T., and Hono, K. (1999) Atom probe and Transmission Electron Microscopy investigations of heavily drawn pearlitic steel wire, Metallurgical and Materials Transactions A 30, 717–727.Google Scholar
  16. 16.
    Read, H.G., Reynolds, W.T., Hono, K. and Tarui, T. (1997) APFIM and TEM studies of drawn pearlite wire, Scripta Materialia 37(8), 1221–1230.CrossRefGoogle Scholar
  17. 17.
    Sauvage, X., Copreaux, J., Danoix, F. and Blavette, D. (2000) Atomic-scale observation and modeling of cementite dissolution in heavily deformed pearlitic steel wires, Philosophical Magazine A 80(4), 781–796.CrossRefGoogle Scholar
  18. 18.
    Nam, W.J., Bae, CM., Oh, S.J. and Kwon, S. (2000) Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wire, Scripta Materialia 42, 457.CrossRefGoogle Scholar
  19. 19.
    Hono, K., Ohnuma, M., Murayama, M., Nishida, S., Yoshie, A. and Takahashi T. (2001) Cementite decomposition in heavily drawn pearlite steel wire, Scripta Materialia 44, 977–983.CrossRefGoogle Scholar
  20. 20.
    Fasika, E.J. And Wagenblast, H. (1967) Dilation of alpha iron by carbon, Transactions of the Metallurgical society of AIME 239, 1818–1820.Google Scholar
  21. 21.
    Sauvage, X., Thilly, L. and Blavette, D. (200) Microstructure evolutions in pearlitic steels and Cu/Nb wires resulting from svere plastic deformation during drawing, in E. Aeby-Gautier, M. Clavel and F. Dunne (eds), Euromech-Mecamat’2000, EDP Sciences, Les Ulis, 4–27.Google Scholar
  22. 22.
    Gleiter, H. and Fichtner, M. (2002) Is the enhanced solubility in nanocomposites an electronic effect?, Scripta Materialia 46, 497–500.CrossRefGoogle Scholar
  23. 23.
    Nishida, S., Yoshie, A. and Imagumbai, M. (1998) Work hardening of hypereutectoid and eutectoid steels during drawing, ISIJ International 38(2), 177–186.CrossRefGoogle Scholar
  24. 24.
    Langford, G. and Cohen, M. (1969) Strain hardening of iron by severe plastic deformation, Transactions of the ASM 62, 623–638.Google Scholar
  25. 25.
    Gil Sevillano, J. (1991) Substructure and strengthening of heavily deformed single and two-phase metallic materials, J. Phys III 6, 967–988.Google Scholar
  26. 26.
    Dollar, M., Bernstein, I.M. and Thomson A.W. (1988) Influence of deformation substructure in flow and fracture of fully pearlitic steel, Acta Metallurgica 36(2), 311–320.CrossRefGoogle Scholar
  27. 27.
    Embury, J.D. and Hirth, J.P. (1994) On dislocation storage and the mechanical response of fine scale microstructure, Acta Metall. Mater. 42(6), 2051–2056.CrossRefGoogle Scholar
  28. 28.
    Janecek, M., Louchet, F., Doisneau-Cottignies, B., Brechet, Y. and Guelton, N. (2000) Specific dislocation multiplication mechanisms and mechanical properties in nanoscaled multillayers: the example of pearlite, Philosophical Magazine A 80(7), 1605–1619.CrossRefGoogle Scholar
  29. 29.
    Withers, P.J. and Bhadeshia, H.K.D.H. (2001) Residual stress: Part 1 — measurement techniques (overview), Materials Science & Technology 17, 355–365.CrossRefGoogle Scholar
  30. 30.
    Zolotorevsky, N. Yu. and Krivonosova, N. Yu (1996) Effect of ferrite crystals’ plastic anisotropy on residual stresses on cold-drawn steel wire, Materials Science & Engineering A205, 239–246.CrossRefGoogle Scholar
  31. 31.
    Van Acker, K., Root, J., Van Houtte, P. and Aernoudt, E. (1996) Neutron diffraction measurement of the residual stress in the cementite and ferrite phases of cold-drawn steel wires, Acta Materialia. 44(10), 4039–4049.CrossRefGoogle Scholar
  32. 32.
    Lukas, P., Tomota, Y., Harjo, S., Neov, D., Strunz, P. and Mikula, P. (2001) In situ neutron diffraction study of drawn pearlitic steel wires upon tensile deformation, Journal of neutron research 9, 415–421.CrossRefGoogle Scholar
  33. 33.
    Languillaume, J., Kapelski, G. and Baudelet, B. (1997) Evolution of the tensile strength in heavily cold drawn and annealed pearlitic steel wires, Materials Letters 33, 241–245.CrossRefGoogle Scholar
  34. 34.
    Watte, P., Van Humbeeck, J., Aernoudt, E. and Lefever, I. (1996) Strain ageing in heavily drawn eutectoid steel wires, Scripta Materialia 34(1), 89–95.CrossRefGoogle Scholar
  35. 35.
    Cottrell, A.H. and Bilby, B.A. (1949) Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. 62, 49–62.Google Scholar
  36. 36.
    Friedel, J. (1956) Les dislocations, Éditions Gauthier-Villars.Google Scholar
  37. 37.
    Yamada, Y. (1976) Static strain aging of eutectoid carbon steel wires, Transactions ISIJ 16, 417–426.Google Scholar
  38. 38.
    Kemp, LP., Pollard, G. and Bramley, A.N. (1990) Static strain aging in high carbon steel wire, Materials Science & Technology 6, 331–337.CrossRefGoogle Scholar
  39. 39.
    Buono, V.T.L., Andrade, M.S. and Gonzales B.M. (1998) Kinetics of strain aging in drawn pearlitic steels, Metallurgical and Material Transactions A 29A, 1415–1423.CrossRefGoogle Scholar
  40. 40.
    Lement, B.S. and Cohen, M. (1956) A dislocation attraction model for the first stage of tempering, Acta Metallurgica 4, 469–476.CrossRefGoogle Scholar
  41. 41.
    Fast, J.D. (1961) Frottement interieur des métaux, Métaux, Corrosion, Industries,311–320Google Scholar
  42. 42.
    Aaron, H.B. and Kotler, G.R. (1971) Second phase dissolution, Metallurgical Transactions A 2, 393–408.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • A. Phelippeau
    • 1
  • S. Pommier
    • 1
  • C. Prioul
    • 1
  • M. Clavel
    • 1
  1. 1.Laboratoire de Mécanique des Sols, Structures et MatériauxÉcole Centrale ParisChâtenay-Malabry, CedexFrance

Personalised recommendations