Advertisement

The Beginning of Chemical Evolution Experiments

Recollections and Perspectives
  • S.L. Miller
  • J.L. Bada
  • A. Lazcano
Part of the Cellular Origin and Life in Extreme Habitats and Astrobiology book series (COLE, volume 7)

Abstract

In spite of the ongoing debate about the oldest morphological evidence of life, it is generally accepted by scientists that the first living beings emerged on Earth early in the history of the planet. However, our understanding of the processes that led to the emergence of life is also hindered by the lack of geological evidence of the prebiotic environment, i.e., we have no direct information on the chemical composition of the primitive atmosphere, the temperature of the planet, the pH of the primitive hydrosphere, and other conditions which may have been important for the origin of life. Hence, it is not surprising that this has led to intense debates and the formulation of different and even contradictory explanations of how life came into being.

Keywords

Water Mist Hydrogen Cyanide Miller Experiment Prebiotic Synthesis Laboratory Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Bada, J. L. and Lazcano, A. (2002) Miller revealed new ways to study the origin of life. Nature 416, 475.ADSCrossRefGoogle Scholar
  2. Bada, J. L. and Lazcano, A. (2003) Prebiotic soup—revisiting the Miller experiment. Science 300, 745–746.CrossRefGoogle Scholar
  3. Baudish, O. (1913) Ueber das CO2 fixation. Angew. Chem. 2, 612–616.CrossRefGoogle Scholar
  4. Garrison, W. M., Morrison, D. C., Hamilton, J. G., Benson, A. A., and Calvin, M. (1951) The reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114, 416–418.ADSCrossRefGoogle Scholar
  5. Herrera, A. L. (1942) A new theory of the origin and nature of life. Science 96, 14.ADSCrossRefGoogle Scholar
  6. Klages, A. (1903) Ueber das methilamino-acetonitril. Berichte der Deutschen Chemischen Gesellschaft 36, 1506.CrossRefGoogle Scholar
  7. Lazcano, A. and Bada, J. L. (2003) The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Origins Life Evol. Biosph. 33, 235–242.ADSCrossRefGoogle Scholar
  8. Ling, A. R. and Nanji, D. R. (1922) The synthesis of glycine from formaldehyde. Biochem. J. 16, 702–705.Google Scholar
  9. Lob, W. (1913) Uber das Verhalten des Formamids unter der Wirkung des stillen Entladung. Ein Beilrag zur Frage der Stickstoff-Assimilation. Bercfihte der Deutschen Chemischen Gesellschaft 46, 684–697.CrossRefGoogle Scholar
  10. Miller, S. L. (1953) A production of amino acids under possible primitive Earth conditions. Science 117, 528–529.ADSCrossRefGoogle Scholar
  11. Miller, S. L. (1955) Production of some organic compounds under possible primitive Earth conditions. J. Am. Chem. Soc. 77, 2351–2361.CrossRefGoogle Scholar
  12. Miller, S. L. (1974) The first laboratory synthesis of organic compounds under primitive Earth conditions, In Jerzy Neyman (ed.), The Heritage of Copernicus: theories “pleasing to the mind” (MIT Press, Cambridge), 228–242.Google Scholar
  13. Miller, S. L., Schopf, J. W., and Lazcano, A. (1997) Oparin’s “Origin of Life”: sixty years later. J. Mol. Evol. 44, 351–353.CrossRefGoogle Scholar
  14. Rabinovich, E. I. (1945) Photosynthesis. Vol I (Interscience, New York), pp. 61–98.Google Scholar
  15. Ring, D., Wolman, Y., Friedmann, N., and Miller, S. L. (1972) Prebiotic synthesis of hydrophobic and protein amino acids. Proc. Natl. Acad. Sci. USA 69, 765–768.ADSCrossRefGoogle Scholar
  16. Urey, H. C. (1952) On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA 38, 351–363.ADSCrossRefGoogle Scholar
  17. Wohler, F. (1828) Ueber das organische synthese. Ann. Physik 12, 253.ADSGoogle Scholar
  18. Wolman, Y., Haverland, W. J., and Miller, S. L. (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 69, 923–926.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S.L. Miller
    • 1
  • J.L. Bada
    • 2
  • A. Lazcano
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaUSA
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaUSA
  3. 3.Facultad de CienciasUNAM Apdo.Mexico D.FMéxico

Personalised recommendations