Skip to main content

The Origin of Biomolecular Chirality

Search for Efficient Chiroselective Autocatalytic Reactions

  • Chapter
Life in the Universe

Abstract

Life is characterized by broken mirror symmetry (Pályi et al., 1999). On the molecular level, proteins are composed almost exclusively of L-amino acids while nucleic acids only contain D-sugars. Without this chiral asymmetry, prebiotic molecular complexity leading to the formation of biologically active polymers could probably not have evolved (Joyce et al., 1984; Avetisov and Goldanskii, 1991). Nevertheless, more than 1½ century after Pasteur’s discovery, the origin of biomolecular chiral asymmetry is still a mystery. Meanwhile, it is accepted that homochirality has already appeared early during chemical evolution and that a homochiral molecular environment was rather a pre-condition than a consequence of life (Keszthelyi, 1995; Avalos et al., 2000). Parity violation (MacDermott, 1993) and other chiral factors such as circularly polarized light are omnipresent and can lead under favorable conditions to enantio-meric enrichment. However, this enhancement usually remains tiny and can be annihilated by long-term racemization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  • Avalos, M., Babiano, R., Cintas, P., Jiménez, J.L. and Palacios, J.C. (2000) From parity to chirality: Chemical implications revisited, Tetrahedron: Asymmetry 11, 2845–2874.

    Article  Google Scholar 

  • Avetisov, V.A. and Goldanskii, V.I. (1991) Homochirality and stereospecific activity: Evolutionary aspects, BioSystems 25, 141–149.

    Article  Google Scholar 

  • Blackmond, D.G., McMillan, C.R., Ramdeehul, S., Schorm, A. and Brown, J.M. (2001) Origins of asymetric amplification in autocatalytic alkylzinc additions, J. Am. Chem. Soc. 123, 10103–10104.

    Article  Google Scholar 

  • Buhse, T. (2003) Atentative kinetic model for chiral amplificationinautocatalytic alkylzinc additions, Tetrahedron: Asymmetry 14, 1055–1061.

    Article  Google Scholar 

  • Buono, F.G. and Blackmond, D.G. (2003) Kinetic evidence for a tetrameric transition state in the asymetric autocatalytic alkylation of pyrimidyl aldehydes, J. Am. Chem. Soc. 125, 8978–8979.

    Article  Google Scholar 

  • De Min, M., Levy, G. and Micheau, J.C. (1988) Chiral resolutions, asymmetric synthesis and amplification of enantiomeric excess, J. Chim. Phys. 85, 603–619.

    Google Scholar 

  • Decker, P. (1979) Spontaneous generation and amplification of molecular asymmetry through kinetical bistability in open systems, In: D.C. Walker (ed) Origin of optical activity in nature, Amsterdam, Elsevier, pp. 109–124.

    Google Scholar 

  • Feringa, B.L. and van Delden, R.A. (1999) Absolute asymmetric synthesis: The origin, control, and amplification of chirality, Angew. Chem. Int. Ed. 38, 3419–3438.

    Article  Google Scholar 

  • Frank, F.C. (1953) On spontaneous asymmetric synthesis, Biochim. Biophys. Acta 11, 459–463.

    Article  Google Scholar 

  • Jacques, J., Collet, A. and Wilen, S.H. (1981) Enantiomers, Racemates and Resolution, J. Wiley, New York.

    Google Scholar 

  • Joyce, G.F., Visser, G.M., van Boeckel, C.A.A., van Boom, J.H., Orgel, L. and van Westrenen, J. (1984) Chiral selection in poly(C)-directed synthesis of oligo(G), Nature 310, 602-604.

    Article  ADS  Google Scholar 

  • Keszthelyi, L. (1995) Origin of the homochirality of biomolecules, Quart. Rev. Biophys. 28, 473–507.

    Article  Google Scholar 

  • Kondepudi, D.K. and Nelson, G.W. (1985) Weak neutral currents and the origin of biomolecular chirality, Nature 314, 438–441.

    Article  ADS  Google Scholar 

  • Kondepudi, D.K., Kaufman, R. and Singh, N. (1990) Chiral symmetry breaking in sodium chlorate crystallization, Science 250, 975–977.

    Article  ADS  Google Scholar 

  • Kondepudi, D.K., Bullock, K.L., Digits, J.A. and Yarborough, P.D. (1995) Stirring rate as a critical parameter in chiral symmetry breaking crystallization, J. Am. Chem. Soc. 117, 401–404.

    Article  Google Scholar 

  • Kondepudi, D.K. and Asakura, K. (2001) Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior, Acc. Chem. Res. 34, 946–954.

    Article  Google Scholar 

  • MacDermott, A.J. (1993) The weak force and the origin of life, In: C. Ponnamperuma and J. Chela-Flores (eds.) Chemical evolution: Origin of life, Hampton, Deepack Publishing, pp. 85–99.

    Google Scholar 

  • Pályi, G., Zucchi, C. and Caglioti, L. (eds.) (1999) Advances in BioChirality, Elsevier, Amsterdam.

    Google Scholar 

  • Singleton, D.A. and Vo, L.K. (2002) Enantioselective synthesis without discrete optically active additives, J. Am. Chem. Soc. 124, 10010–10011.

    Article  Google Scholar 

  • Soai, K., Shibata, T., Morioka, H., Choji, K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule, Nature 378, 767–768.

    Article  ADS  Google Scholar 

  • Soai, K., Shibata, T. and Sato, I. (2000) Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis, Acc. Chem. Res. 33, 382–390.

    Article  Google Scholar 

  • Soai, K. and Sato, I. (2002) Asymmetric autocatalysis and its application to chiral discrimination, Chirality 14, 548–554.

    Article  Google Scholar 

  • Soai, K., Sato, I., Shibata, T., Komiya, S., Hayashi, M., Matsueda, Y., Imamura, H., Hayase, T., Morioka, H., Tabira, H., Yamamoto and Kowata, Y. (2003) Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis, Tetrahedron: Asymmetry 14, 185–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rivera Islas, J., Micheau, J.C., Buhse, T. (2004). The Origin of Biomolecular Chirality. In: Seckbach, J., Chela-Flores, J., Owen, T., Raulin, F. (eds) Life in the Universe. Cellular Origin and Life in Extreme Habitats and Astrobiology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1003-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1003-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3093-2

  • Online ISBN: 978-94-007-1003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics