Rλ Dependence of The Kolmogorov Constant and Scaling

  • B. R. Pearson
  • P. -Å. Krogstad
  • G. R. Johnson
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 74)


We attempt to answer one of the outstanding issues in turbulence — does asymptotic inertial range scaling exist and if so, does it exist in a complete or incomplete similarity form? Although we cannot form a firm conclusion our results suggest we are tantalizingly close.


Structure Function Energy Dissipation Rate Inertial Range Scaling Range Turbulent Kinetic Energy Dissipation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kolmogorov, A. N., 1941, The Local Structure of Turbulence in an Incompressible Fluid for Very Large Reynolds Numbers, Dokl. Akad. Nauk. SSSR 30, 299–303.ADSGoogle Scholar
  2. [2]
    Kolmogorov, A.N., 1962, A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number, J. Fluid Mech. 13, 82–85.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    Barenblatt, G. I. & Goldenfieid, N., 1995, Does Fully Developed Turbulence Exist? Reynolds Number Independence versus Asymptotic Covariance, Phys. Fluids 7, 3078–3082.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    Monin A. S. & Yaglom, A. M., 1975, Statistics of Turbulence, Vol. 2, MIT Press.Google Scholar
  5. [5]
    Praskovsky, A. & Oncley, S., 1994, Measurements of Kolmogorov Constant and Intermittency Exponent at High Reynolds Number, Phys. Fluids 6, 2886–2888; Sreenivasan, K. R. 1995, On the universality of the Kolmogorov Constant, Phys. Fluids 7, 2778-2784; Mydlarski, L. & Warhaft, Z., 1996, On the Onset of High-Reynolds Number Grid-Generated Wind Tunnel Turbulence, J. Fluid Mech. 320, 331-368.Google Scholar
  6. [6]
    Belmonte, A., Martin, B. & Goldburg, W. I., 2000, Experimental Study of Taylor's Hypothesis in a Turbulent Soap Film, Phys. Fluids 12, 835–845.ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    Stolovitzky, G. & Sreenivasan, K. R., 1995, Intermittency, the Second-Order Structure Function, and the Turbulent Energy-Dissipation Rate, Phys. Rev. E 52, 3242–3244.ADSCrossRefGoogle Scholar
  8. [8]
    Pearson, B. R., Krogstad, P.-Å. & van de Water, W., 2002, Measurements of the Turbulent Energy Dissipation Rate, Phys. Fluids 14, 1288–1290.ADSCrossRefGoogle Scholar
  9. [9]
    Pearson, B. R., Krogstad, P.-Å. & Carper, M. A., 2001, Re Dependence of the Energy Dissipation Rate and Spectrum in Shear Flows, In Proceedings of the 14th Australasian Fluid Mechanics Conference, (Ed. B. B. Dally), Adelaide, 167–170.Google Scholar
  10. [10]
    Pearson, B. R., Johnson, G. R. & Krogstad, P.-Å., 2002, The Kolmogorov Constant, Intermittency and Scaling, in Advances in Turbulence IX, (Eds. I. P Castro, P. E. Hancock & T. G. Thomas), CIMNE, Barcelona, 49–52.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • B. R. Pearson
    • 1
  • P. -Å. Krogstad
    • 2
  • G. R. Johnson
    • 1
  1. 1.School of Mechanical, Materials, Manufacturing Engineering & ManagementUniversity of NottinghamNottinghamUK
  2. 2.Dept. of Appl. Mech., Thermo. & Fluid DynamicsNorwegian University of Science & TechnologyTrondheimNorway

Personalised recommendations