Advertisement

Homogeneous Anisotropic Turbulence

  • L. Biferale
  • I. Daumont
  • A. Lanotte
  • F. Toschi
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 74)

Abstract

We present a numerical study of anisotropic statistical fluctuations in stationary homogeneous turbulent flows. By means of a new argument, we are able to predict the dimensional scaling exponents, ζ d l (p) = (p + l)/3, for the projections of the p-th order structure function in the l-th sector of the rotational group. Using these as a reference for normal behavioue, we show that the measured exponents are anomalous, i.e., they exhibit a clear deviation from the dimensional prediction. Some preliminary results about decaying anisotropic turbulence are also given.

Keywords

Inertial Range Anomalous Scaling Anisotropic Turbulence Longitudinal Structure Function Order Structure Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frisch, U. (1996). Turbulence: The Legacy of A. N. Kolmogorov Cambridge University Press, Cambridge, UK.Google Scholar
  2. Kurien, S. and Sreenivasan, K. (2000). Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence. Phys. Rev. E, 62: 2206–2212.MathSciNetADSCrossRefGoogle Scholar
  3. Shen, X. and Warhaft, Z. (2002). Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids, 14: 370–381.MathSciNetADSCrossRefGoogle Scholar
  4. Arad, I., L'vov, V. S. and Procaccia, I. (1999). Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group. Phys. Rev. E, 59: 6753–6765.MathSciNetADSCrossRefGoogle Scholar
  5. Biferale, L. and Toschi, F. (2001). Anisotropic homogeneous turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors. Phys. Rev. Lett., 86: 4831–4834.ADSCrossRefGoogle Scholar
  6. Yoshida, K. and Kaneda, Y. (2000). Anomalous scaling of anisotropy of second order moments in a model of a randomly advected solenoidal vector field. Phys. Rev. E, 63: 016308-1-016308-8.Google Scholar
  7. Arad, I. and Procaccia, I. (2001). Spectrum of anisotropic exponents in hydrodynamic systems with pressure. Phys. Rev. E, 63: 056302-1-056302-19.Google Scholar
  8. Grossmann, S., Von der Heydt, A. and Lohse, D. (2001). Scaling exponents in weakly anisotropic turbulence from the Navier-Stokes equation. J. Fluid Mech., 440: 381–390.ADSzbMATHCrossRefGoogle Scholar
  9. Kraichnan, R. H. (1994). Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett., 72: 1016–1019.ADSCrossRefGoogle Scholar
  10. Biferale, L., Daumont, I., Lanotte, A. and Toschi, F. (2002). Anomalous and dimensional scaling in anisotropic turbulcence. Phys. Rev. E. to appear.Google Scholar
  11. Biferale, L. and Vergassola, M. (2001). Isotropy vs anisotropy in small-scale turbulence. Phys. Fluids, 13: 2139–2141.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • L. Biferale
    • 1
    • 2
  • I. Daumont
    • 1
  • A. Lanotte
    • 2
    • 3
  • F. Toschi
    • 2
    • 4
  1. 1.Dipartimento di FisicaUniversità di Tor VergataRomaItaly
  2. 2.INFMUnitá di Tor VergataRomaItaly
  3. 3.CNR-ISACLecceItaly
  4. 4.CNR-IACRomaItaly

Personalised recommendations