Noise-induced Resonance in Semiconductor Lasers with Optical Feedback

  • C. Masoller
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 9)

Abstract

We numerically study the effect of additive gaussian white noise in the dynamics of a timedelayed feedback system. The system is a semiconductor laser witb optical feedback from a distant reflector. For moderate feedback levels the system presents several coexisting attractors, and noise levels above a threshold value induce jumps among these attractors. Based on the residence times probability density, P(I), we show that with increasing noise the dynamics of attractor jumping exhibits a resonant behavior. P(I) presents peaks at multiples of the external-cavity delay time, and the strength of the peaks reaches a maximum value for an optimal level of noise. The results are explained by the interplay of noise and delayed feedback.

Keywords

Noise Level Semiconductor Laser Noise Intensity Stochastic Resonance External Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Gammaitoni, P. Hänggi, P. Jung. and F. Marchesani, Rev. Mod. Phys. 70, 223 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    A. S. Pikovsky and R. Kurths, Pbys. Rev. Lett. 78, 775 (1997).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997); Phys. Rev. E 58, 3843 (1998); H. Hempel, L. Schimansky-Geier, and J. García-Ojalvo, Phys. Rev. Lett. 82, 3713 (1999).ADSCrossRefGoogle Scholar
  4. [4]
    M. Ciolini, A. Lapucci, R. Meucci, Peng-ye Wang, and F. T. Arecchi, Phys. Rev. A 46, 5874 (1992); S. Balle, M. San Miguel, N. B. Abraham, J. R. Tredicce, R. Alvarez, E. J. D’Angelo, A. Gambhir, K. Scott Thornburg and R. Roy, Phys. Rev. Lett. 72, 3510 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    M. San Miguel and R. Toral, Instabilities and Nonequilibrium Structures VI, Eds, E. Tirapegui, J. Martínez, and R. Tiemann, Kluwer Academic Publishers, 35–130 (2000).Google Scholar
  6. [6]
    L. S. Tsimring and A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001).ADSCrossRefGoogle Scholar
  7. [7]
    C. Masoller, Phys. Rev. Lett. 88, 034102 (2002).ADSCrossRefGoogle Scholar
  8. [8]
    R. Lang and K. Kobayashi, IEEE r, Quantum Electron. QE-16, 347 (1980).ADSCrossRefGoogle Scholar
  9. [9]
    G. Giacomelli, M. Giudici, S. Balle, and J. H. Tredicce, Phys. Rev. Lett. 84, 3298 (2000).ADSCrossRefGoogle Scholar
  10. [10]
    F. Marino, M. Giudici, S. Garland, and S. Balle, Phys. Rev. Lett. 88, 040601 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995)CrossRefGoogle Scholar
  12. [12]
    G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclassic. Opt. 7, 87 (1995).ADSCrossRefGoogle Scholar
  13. [13]
    K. Ikeda, K. Otsuka, and K. Matsumoto, Progr. Theor. Phys. Suppl. 99, 295 (1989); K. Otsuka, Phys. Rev. Lett. 65, 329 (1990).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Mulet and C. R. Mirasso, Phys. Rev. E 59, 5400 (1999); M. C. Eguia and G. B. Mindlin, Pbys.Rev. E 60, 1551 (1999).ADSCrossRefGoogle Scholar
  15. [15]
    T. Sano, Phys. Rev. A 50, 2719 (1994); I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel and D. Lenstra, Phys. Rev. Lett. 76, 220 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    F. T. Areechi and F. Lisi, Phys. Rev. Lett. 49, 94 (1982); F. T. Arecchi, It. Meucci, G. Puccioni, and J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982); F. T. Arecchi and A. Califano, Europhys. Lett. 3, 5 (1987); F. T. Arecchi, Chaos 1, 357 (1991).ADSCrossRefGoogle Scholar
  17. [17]
    M. R. Beasley, D. D. Humieres, and B. A. Huberman, Phys. Rev. Lett. 50, 1328 (1983); It. Voss, Phys. Rev. Lett. 50, 1329 (1983); F. T. Arecchi and F. Lisi, Phys. Rev. Lett. 50, 1330 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    S. Kraut, U. Feudel, and C. Grebogi, Phys. Rev. E 59, 5253 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Rev. Lett. 74, 1052 (1995)ADSCrossRefGoogle Scholar
  20. [20]
    M. H. Choi, R. F. Fox, and P. Jung, Phys. Rev. E 57, 6335 (1998).ADSCrossRefGoogle Scholar
  21. [21]
    F. Marchesani, L. Gammaitoni, F. Apostolico, and S. Santucci, Phys. Rev. E 62, 146 (2000).ADSCrossRefGoogle Scholar
  22. [22]
    C. Palenzuela, R. Toral, C. R. Mirasso, O. Calvo, and J. D. Gunton, Europhysics Letters 56, 347 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    H. A. Kramers, Physica (Utrecht) 7, 284 (1940).MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    N. MacDonald, Biological delay syslem.: linear stability theory. Cambridge University Press (Cambridge, 1989).Google Scholar
  25. [25]
    D. H. Zanette, Phys. Rev. E 62, 3167 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • C. Masoller
    • 1
  1. 1.Instituto de Física, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations