Resonant behavior of the wake of a flat plate: Hot wire and sound scattering measurements

  • R. H. Hernández
  • M. Vial
  • L. Bellon
  • C. Baudet
Conference paper
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 9)


We report experimental measurements of the wake behavior of a thin flat plate submitted to an external harmonic forcing. Tho slightly different configurations are examined. Classical hot wire measurements of the velocity field downstream the plate and sound scattering experiments of the near wake demonstrates that the flat plate wake displays a kind of inertial resonance when the inverse of the forcing frequency matches the flying time of fluid particles along the moving part of the plate.


Flat Plate Force Frequency Resonant Behavior Wake Width Display Tile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Schumm, E. Berger and P. A. Monkewitz, Self excited oscillations in the wake of two-dimensional bluff bodies and their control, J.Fluid Mech., 271, pp. 17, 1994.ADSCrossRefGoogle Scholar
  2. [2]
    A. Couairon and J. M. Chomaz, Global instability in fully nonlinear systems, Phys. Rev. Lett., 77, pp. 4015, 1996.ADSCrossRefGoogle Scholar
  3. [3]
    P. Huerrre, Local and Global Instabilities in Spatially Developing Flows. Annu. Rev. Fuid Mech., 22, pp. 473, 1990.ADSCrossRefGoogle Scholar
  4. [4]
    M. Provansal, C. Mathis and L. Boyer, Benard-von Karman instability: transient and forced regimes, J.Fluid Mech., 182, pp. 1, 1987.ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    R. H. Hernandez and C. Baudet, A new perturbation method. Application to the Benard-von Kärmän instability, Europhys. Lett., 49(3), pp. 329, 2000.Google Scholar
  6. [6]
    R. H. Hernändez and C. Baudet, Ultrasound Scattering by Forced Laminar Wakes. Lecture Notes in Physics, Vortex Structure and Dynamics, A. Maurel and P. Petitjeans (eds.), Springer Verlag. 2000.Google Scholar
  7. [7]
    A. L. Fabrikant, Sound scattering by vortex flows, Sov.Phys.Acoust., 29,(2), pp. 152, 1983.Google Scholar
  8. [8]
    F. Lund and C. Rojas, Ultrasound as a probe of turbulence, Physica D, 37, pp. 508, 1989.Google Scholar
  9. [9]
    M. Gharib and K. Williams-Stuber, Experiments on the Forced Wake of an Airfoil. J. Fluid Mech. 208, pp, 225, 1989.ADSCrossRefGoogle Scholar
  10. [10]
    J.J. Miau, C. R. Chen and J. H. Chou, A vertically Oscillating Plate Disturbing the Developement of a Boundary Layer. J. Fluid Meeh., 298, pp. 1, 1995.ADSCrossRefGoogle Scholar
  11. [11]
    C. Baudet, S. Ciliberto and J.-F. Pinton, Spectral analysis of the von Kärmän flow using ultrasound scattering, Phys.Rev.Lett., 67,(2), pp. 193, 1991.ADSCrossRefGoogle Scholar
  12. [12]
    J.-F. Pinton and C. Baudet, Measurements of vorticity using ultrasound scattering, in Turbulence in spatially extended systems, Nova Science Publishers, 1993.Google Scholar
  13. [13]
    J.-F. Pinton, C. Laroche, S. Fauve and C. Baudet, Ultrasound scattering by buoyancy driven flows, J.Phys. II France, 3, pp. 767, 1993.CrossRefGoogle Scholar
  14. [14]
    S. Candel, Mecanique des fluides, Dunod, Paris, 1990.Google Scholar
  15. [15]
    J. J. Healey, A new boundary layer resonance enhanced by wave modulation: theory and experiment, J. Fluid Meeh., 304, pp. 231, 1995.MathSciNetADSzbMATHGoogle Scholar
  16. [16]
    A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw Hill, New York, 1965.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • R. H. Hernández
    • 1
  • M. Vial
    • 1
  • L. Bellon
    • 1
  • C. Baudet
    • 2
  1. 1.LEAF-NL, Depto. Ingeniería Mecánica — Universidad de ChileSantiagoChile
  2. 2.LEGI, Université Joseph Fourier de Grenoble (UMR 5519)Grenoble cedex 9France

Personalised recommendations