Advertisement

Reorientation and Undulation Instabilities in Liquid Crystals and Liquid Crystalline Elastomers

  • Helmut R. Brand
Conference paper
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 9)

Abstract

In this pedagogic overview we discuss how preferred directions and layers in two classes of materials can be reoriented and/or give rise to undulation instabilities. After we have described the two classes of of materials of interest here, namely liquid crystals and liquid crystalline elastomers, we summarize some of their macroscopic properties. In the other sections of this survey we analyze how these materials respond to external electric or magnetic fields as well as to applied mechanical stresses and shear flow. The results obtained are compared to recent experimental results reported in the types of materials studied here: nematic and smectic A liquid crystals and liquid crystalline elastomers along with related systems including lyotropic L α phases and lamellar block copolymer melts.

Keywords

Liquid Crystal Nematic Liquid Crystal Nematic Phase Liquid Crystalline Phasis Relative Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.G. de Gennes, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1982).Google Scholar
  2. [2]
    P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).Google Scholar
  3. [3]
    H. Finkelrnann, H.J. Kock and G. Rehage, Mokromol. Chem., Rapid Commun. 2, 317 (1981).CrossRefGoogle Scholar
  4. [4]
    H. Finkelmann and H.R. Brand, Trends in Polym. Science 2, 222 (1994).Google Scholar
  5. [5]
    H.R. Brand and H. Finkelmann, Handbook of Liquid Crystals VoI.III, Chapter V, 277 (1998).Google Scholar
  6. [6]
    H. Finkelmann, H. Ringsdorf and J.H. Wendorff, Makromol. Chem. 179, 273 (1978).CrossRefGoogle Scholar
  7. [7]
    A.M. Donald and A.H. Windle, Liquid Crystal Polymers (Cambridge University Press, 1992).Google Scholar
  8. [8]
    J. Küpfer, E. Nishikawa and H. Finkelmann, Polym. Adv. Techn. 5, 110 (1994).CrossRefGoogle Scholar
  9. [9]
    H. Pleiner and H.R. Brand, Macromol. 25, 895 (1992); Mol. Cryst. Liq. Cryst. 199, 407 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    H.R. Brand and H. Pleiner, Physica A208, 359 (1994).ADSGoogle Scholar
  11. [11]
    J. Küpfer and H. Finkelmann, Makromol. Chem., Rapid Commun. 12, 717 (1991).CrossRefGoogle Scholar
  12. [12]
    J. Küpfer and H. Finkelmann, Macromol. Chern. Phys. 195, 1353 (1994).CrossRefGoogle Scholar
  13. [13]
    S. Disch, C. Schmidt and H. Finkelmann, Makromol. Chem., Rapid Commun. 15, 303 (1994).CrossRefGoogle Scholar
  14. [14]
    H.R. Brand and K. Kawasaki, Makromol. Chem., Rapid Commun. 15, 251 (1994).CrossRefGoogle Scholar
  15. [15]
    S. Disch, C. Schmidt and H. Finkelmann, Polymeric Materials Encyclopedia, (CRC Press, Boca Raton, 1996).Google Scholar
  16. [16]
    R. Zentel, Liq. Cryst. 1, 589 (1986).CrossRefGoogle Scholar
  17. [17]
    P.G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971).CrossRefGoogle Scholar
  18. [18]
    D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, and P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971).ADSCrossRefGoogle Scholar
  19. [19]
    P.C. Martin, O. Parodi and P.S. Pershan, Phys. Rev. A6, 2401 (1972).ADSGoogle Scholar
  20. [20]
    D. Forster, Ann. Phys. 85, 505 (1974).ADSGoogle Scholar
  21. [21]
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, (Benjamin, Reading, Mass., 1975).Google Scholar
  22. [22]
    H. Pleiner and H.R. Brand, Hydrodynamics and Electrohydrodynamics of Nematic Liquid Crystals, in Pattern Formation in Liquid Crystals, eds. A. Buka and L. Kramer (Springer, New York, 1996) p. 15ff.CrossRefGoogle Scholar
  23. [23]
    H.R. Brand, H. Pleiner and W. Renz, J. Phys. (Paris) 51, 1065 (1990).CrossRefGoogle Scholar
  24. [24]
    H. Temmen, H. Pleincr, M. Liu and H.R. Brand, Phys. Rev. Lett. 84, 3228 (2000); 86, 745 (2001).ADSCrossRefGoogle Scholar
  25. [25]
    H. Pleiner, M. Liu and H.R. Brand, Rheologica Acta 39, 560 (2000).CrossRefGoogle Scholar
  26. [26]
    L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1986).Google Scholar
  27. [27]
    W.P. Mason, Physical Acoustics and the Properties of Solids (van Nostrand, New York, 1958).Google Scholar
  28. [28]
    I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).Google Scholar
  29. [29]
    H.R. Brand and H. Pleiner, J. Physique (France) 45, 563 (1984).CrossRefGoogle Scholar
  30. [30]
    H.R. Brand, P.E. Cladis and H. Pleiner, Macromolecules 25, 7223 (1992).ADSCrossRefGoogle Scholar
  31. [31]
    A. Eremin, S. Diele, G. Pelzl, H. Nadasi, W. Weissflog, J. Salfetnikova and H. Kresse, Phys. Rev. E 64, 051701 (2001).ADSCrossRefGoogle Scholar
  32. [32]
    H.R. Brand and J. Swift, J. Phys. Lett. (France) 44, 333 (1983).ADSCrossRefGoogle Scholar
  33. [33]
    C. Cajas, J.B. Swift and H.R. Brand, Phys. Rev. A 28, 505 (1983).ADSCrossRefGoogle Scholar
  34. [34]
    C. Cajas, J.B. Swift and H.R. Brand, Phys. Rev. A 30, 1579 (1984).ADSCrossRefGoogle Scholar
  35. [35]
    P.G. de Gennes, Compt. Rend. Acad. Sci. (Paris) B281, 101 (1975).Google Scholar
  36. [36]
    H.R. Brand, Makromol. Chem., Rapid Commun. 10, 57 (1989).CrossRefGoogle Scholar
  37. [37]
    Ph. Martinoty, F. De Beauvais and S. Candau, Phys. Rev. Lett. 27, 1123 (1971).ADSCrossRefGoogle Scholar
  38. [38]
    W. Kaufhold, H. Finkelmann and H.R. Brand, Macromol. Chem. Phys. 192, 2555 (1991).CrossRefGoogle Scholar
  39. [39]
    J. Weilepp and H.R Brand, Europhys. Lett. 34, 495 (1996).ADSCrossRefGoogle Scholar
  40. [40]
    J. Weilepp and H.R. Brand, Europhys. Lett. 37, 499 (1997).ADSCrossRefGoogle Scholar
  41. [41]
    J. Weilepp and H.R Brand, Macromol. Theory Simul. 7, 91 (1998).Google Scholar
  42. [42]
    I. Kundler and H. Finkelmann, Makromol. Chem., Rapid Commun. 16, 679 (1995).CrossRefGoogle Scholar
  43. [43]
    P.G. de Gennes, in Liquid Crystals of One-and Two-Dimensional Order, cds. W. Helfrich and G. Heppke (Springer, New York, 1980) p. 231.CrossRefGoogle Scholar
  44. [44]
    F. Brochard, J. Phys. (Paris) 33, 607 (1972).CrossRefGoogle Scholar
  45. [45]
    E. Nishikawa, H. Finkelmann and H.R. Brand, Makromol. Chem., Rapid Commun. 18, 65 (1997).CrossRefGoogle Scholar
  46. [46]
    E. Nishikawa and H. Finkelrnann, Makromol. Chem. Phys. 198, 2531 (1997).CrossRefGoogle Scholar
  47. [47]
    I. Kundler, E. Nishikawa and H. Finkelrnann, Macromol. Symp. 117, 11 (1997).CrossRefGoogle Scholar
  48. [48]
    M. Cagnon and G. Durand, Phys. Rev. Lett. 45, 1418 (1980).ADSCrossRefGoogle Scholar
  49. [49]
    L. Ricard and J. Prost, J. Phys. (Paris) 42, 861 (1981).CrossRefGoogle Scholar
  50. [50]
    M.R. Fisch, P.S. Pershan and L.B. Sorenson, Phys. Rev. A29, 2741 (1984).ADSGoogle Scholar
  51. [51]
    M. Benzekri, T. Claverie, J.-P. Marcerou and J.C. Rouillon, Phys. Rev. Lett. 68, 2480 (1992).ADSCrossRefGoogle Scholar
  52. [52]
    J. Schätsle, W. Kaufhold and H. Finkelmann, Macromol. Chem. Phys. 190, 3269 (1989).CrossRefGoogle Scholar
  53. [53]
    M. Delaye, R. Ribotta and G. Durand, Phys. Lett. A44, 139 (1973).ADSGoogle Scholar
  54. [54]
    N.A. Clark and R.B. Meyer, Appl. Phys. Lett. 22, 493 (1973).ADSCrossRefGoogle Scholar
  55. [55]
    G.K. Auernhammer, H.R. Brand, and H. Pleiner, Rheol. Acta 39, 215 (2000).CrossRefGoogle Scholar
  56. [56]
    C.R. Safinya, E.B. Sirota and R.J. Plano, Phys. Rev. Lett. 66, 1986 (1991).ADSCrossRefGoogle Scholar
  57. [57]
    P. Panizza, P. Archambault and D. Roux, J. Phys. II (France) 5, 303 (1995).CrossRefGoogle Scholar
  58. [58]
    O. Diat O and D. Roux, J. Phys. II (France) 3, 9 (1993).CrossRefGoogle Scholar
  59. [59]
    O. Diat, D. Roux D and F. Nallet, J. Phys. II (France) 3, 1427 (1993).CrossRefGoogle Scholar
  60. [60]
    L. Noirez and A. Lapp, Phys. Rev. Lett. 78, 70 (1997).ADSCrossRefGoogle Scholar
  61. [61]
    L. Noirez, Phys. Rev. Lett. 84, 2164 (2000).ADSCrossRefGoogle Scholar
  62. [62]
    Y. Zhang, U. Wiesner and H.W. Spiess Macromolecules 28, 778 (1995).ADSCrossRefGoogle Scholar
  63. [63]
    U. Wiesner, Macromol. Chem. Phys. 198, 3319 (1997).CrossRefGoogle Scholar
  64. [64]
    J. Zipfel, P. Lindner, M. Tsianou, P. Alexandridis and W. Richtering, Langmuir 15, 2599 (1999).CrossRefGoogle Scholar
  65. [65]
    H. Leist, D. Maring, T. Thurn-Albrecht and U. Wiesner J. Chem. Phys. 110, 8225 (1999).ADSCrossRefGoogle Scholar
  66. [66]
    Th. Soddemann, G. Auernhammer, B. Duenweg and K. Kremer, submitted for publication (2002).Google Scholar
  67. [67]
    O. Müller and H.R. Brand, submitted for publication (2002).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Helmut R. Brand
    • 1
  1. 1.Theoretische Physik III, Universität BayreuthBayreuthGermany

Personalised recommendations