Advertisement

Environmental Radioactivity In Soil Samples From Agricultural Lands

  • M. Eral
  • S. Aytas
  • S. Akyil
  • M. A. A. Aslani
Conference paper
Part of the NATO Science Series book series (NAIV, volume 33)

Abstract

The radiation to which the human population is exposed comes from very diverse sources. Some of this sources are natural features of the environment. Significant natural radionuclides in soil, air, water, plant and living organism include isotopes of the 238U and 232Th decay chains and 40K. The concentration of radionuclides in soil which is directly relevant to the outdoor exposure, is largely determined by the activity concentration in the source rock.

Keywords

Source Rock International Atomic Energy Agency Chernobyl Accident 137Cs Concentration Natural Radionuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Fressel, M. J., Koster, H.W., Radium in Soil. In: The Environmental Behaviour of Radium, Vol.1, Technical Reports Series No.310, IAEA, Vienna, pp. 323–334, 1990.Google Scholar
  2. 2.
    Iyengar, M. A. R., The Natural Distribution of Radium. In: The Environmental Behaviour of Radium, Vol. 1, Technical Reports Series No.310, IAEA, Vienna, pp. 59–128, 1990.Google Scholar
  3. 3.
    Jaworowski, Z., Sources and the Global Cycle of Radium. In:The Environmental Behaviour of Radium, Vol. 1, Technical Reports Series No. 310, IAEA, Vienna, pp. 129–142, 1990.Google Scholar
  4. 4. Yunoki, E., Kataoka, T., Michihiro, K., Sugiyama, H., Shimizu, M., Mori, T., Activity Concentration of Radium-226 and Uranium-238 in Various Soils. J. Radioanal. Nucl. Chem. 166(4), 331–341, 1992.CrossRefGoogle Scholar
  5. 5.
    Malanca, A., Gaidolfi, L., Pessina, V., Dallara, G., Distribution of Radium-226, Thorium-232 and Potasium-40 in Soils of Rio Grande Do Norte (Brazil). J. Environ. Radioactivity, 30(1), 55–67, 1995.Google Scholar
  6. 6.
    Fisenne, M. I., Welford, A.G., Perry, P., Baird, R., Keller, W. H., Distributional 234,238U, 226Ra, 210Pb ve 210Po in Soil. Environment International, 1, 245–246, 1978.CrossRefGoogle Scholar
  7. 7.
    Akyil S., Aslani M. A. A., Gurboga G., Aytas S., Eral M., Activity Concentration of Radium-226 in Agricultural soils, J. Radioanal. Nucl. Chem., 254(1), 9–14, 2002.CrossRefGoogle Scholar
  8. 8. Avery S V., Fate Of Caesium in The Environment: Distribution Between the Abiotic and Biotic Components of Aquatic and Terrestrial Ecosystems, J. Environ. Radioactivity, 30(2), 139–171. (1996).CrossRefGoogle Scholar
  9. 9.
    Ivanov Y A, Lewyckyj N, Levchuk S E, Prister D S, Firsakova S K, Arkhipov N P, Arkhipov, A N, Kruglov S V, Alexakhin R M, Sandalls J, Askbrant S., Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J. Environ. Radioactivity, 35(1), 1–21, 1997.CrossRefGoogle Scholar
  10. 10.
    Realo E, Jogi J, Koch R, Realo K., Studies on radiocaesium in Estonian soils. J. Environ. Radioactivity, 29(2), 111–119, 1995.CrossRefGoogle Scholar
  11. 11.
    Nabyvanets Y B, Gesell T F, Jen M H, Chang W P., Distribution of 137Cs in Soil Along Ta-Han River Valley in Tau-Yuan county in Taiwan. J. Environ. Radioactivity, 54, 341–400, 2000.Google Scholar
  12. 12.
    Isaksson M, Erlandsson B, Mattsson S. A 10-Year Study Of The 137Cs Distribution In Soil and A Comparison of Cs Soil Invertory With Precipitation-Determined Deposition, J. Environ. Radioactivity, 55, 47–59, 2001.CrossRefGoogle Scholar
  13. 13.
    Bossew P, Ditto M, Falkner T, Henrich E, Kienzl K, Rappelsberger U., Contamination of Austrian Soil with 137Cs. J. Environ. Radioactivity, 55, 187–194, 2001.CrossRefGoogle Scholar
  14. 14.
    International Atomic Energy Agency (IAEA) One decade after Chernobyl: Summing up the Consequences of the Accident, Vienna, 1996.Google Scholar
  15. 15.
    UNSCEAR, Sources effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, Annex D, United Nations Publication, New York, 1988.Google Scholar
  16. 16.
    UNSCEAR, Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 2001 Report to the General Assembly, Annex J, United Nations Publication, New York, 2000.Google Scholar
  17. 17.
    Bilo M, Steffens W, Fuhr F, Pfeffer K H., Uptake of 134/ 137Cs in Soil by Cereals as a Function of Several Soil Parameters of Three Soil Types In Upper Swabia And North Rhine-Westphalia (FRG). J. Environ. Radioactivity, 19, 25–39, 1993.CrossRefGoogle Scholar
  18. 18. Fesenko S V, Spiridonov S I, Sanzharova N I, Alexakhin R M., Dynamic of 137Cs Bioavailability In A Soil-Plant System In Areas Of The Chernobyl Nuclear Power Plant Accident Zone With A Different Physico-Chemical Composition Of Radioactive Fallout. J. Environ. Radioactivity, 34(3), 287–313, 1997.CrossRefGoogle Scholar
  19. 19. Varskog P, Naeumann R, Steinnes E., Mobility and Plant Availability Of Radioactive Cs In Natural Soil In Relation To Stable Cs, Other Alkali Elements and Soil Fertility. J. Environ. Radioactivity, 22, 43–53, 1994.CrossRefGoogle Scholar
  20. 20.
    Entry J A, Watrud L S., Potential Remediation of 137Cs and 90Sr Contaminated Soil By Accumulation in Alamo Switchgrass, Water, Air and Soil Pollution, 104, 339–352, 1998.CrossRefGoogle Scholar
  21. 21.
    Aslani M. A. A, Aytas S., Akyil S., Yaprak G., Yener G., Eral M., Activity Concetration of Ceasium-137 in Agricultural Soils, J. Environ. Radioactivity, 65,131–145, 2003.CrossRefGoogle Scholar
  22. 22.
    Uyttenhove J, Pomme S, Van Waeyenberge B, Hardeman F, Buyse J, Culot J P., Survey of the 137Cs Contamination in Belgium by in-situ Gamma Spectrometry, a Decade After the Chernobyl Accident. Health Physics, 73(4), 644–646, 1997.CrossRefGoogle Scholar
  23. 23. Szerbin P, Koblinger-Bokori E, Koblinger L, Vegvari I, Ugron A., Caesium-137 Migration in Hungarian Soils. The Science of Total Environment, 227, 215–227, 1999.CrossRefGoogle Scholar
  24. 24.
    Fawaris B H, Johanson K J., A Comparative Study on Radioceasium (137Cs) Uptake From Coniferous Forest Soil, J. Environ. Radioactivity, 28(3), 313–326, 1995.CrossRefGoogle Scholar
  25. 25.
    Lee M H, Lee C W., Distribution and characteristics of 239 240Pu and 137Cs in the soil of Korea. J. Environ. Radioactivity, 37(1), 1–16, 1997.CrossRefGoogle Scholar
  26. 26.
    Staunton S., Dumat C., Zsolnay A. Possible role of organic matter in radiocaesium adsorption in soils. J. Environ. Radioactivity, 58, 163–173, 2002.CrossRefGoogle Scholar
  27. 27.
    He Q, Walling D E. Interpreting Particle Size Effects in the Adsorption of 137Cs and Unsupported 210Po by Mineral Soils and Sediments, J. Environ. Radioactivity, 30(2), 117–137, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. Eral
    • 1
  • S. Aytas
    • 1
  • S. Akyil
    • 1
  • M. A. A. Aslani
    • 1
  1. 1.Institute of Nuclear SciencesEge UniversityBornova-IzmirTurkey

Personalised recommendations