Skip to main content

Techniques for Solving the Boundary-Layer Equations

Analytical and numerical approaches

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

Exact solutions of the Navier-Stokes equations

$$ (q \cdot \nabla )q = - \frac{1} {\rho }\nabla p + \nu \nabla ^2 q, $$

where q = (u,v,w) is the fluid velocity, p is the pressure, v is the kinematic viscosity and ρ is the density, can only be found for bodies with very simple geometries. It is also possible to find solutions when the Reynolds number is very small (Stokes flow), but the flow of an almost inviscid fluid, e.g. air, past a body requires us to develop the theory of boundary layers. These flows are of great practical interest, e.g. in aerodynamical flows, and in these flows, in general, we have the Reynolds number, Re » 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burden, R. L. and Faires, J. D. (1993). Numerical analysis (5th edn). PWS, Boston.

    Google Scholar 

  2. Cheng, P. (1977). Combined free and forced convection flow about inclined surfaces in porous media. Int. J. Heat Mass Transfer, 20, 807–13.

    Article  MATH  Google Scholar 

  3. Dennis, S. C. R. (1972). The motion of a viscous fluid past an impulsively started semi-infinite flat plate. J. Inst. Math. Appl., 10, 105–17.

    Article  MATH  Google Scholar 

  4. Harris, S. D., Elliott, L., Ingham, D. B. and Pop, I. (1998). Transient free convection flow past a vertical flat plate subjected to a sudden change in surface temperature. Int. J. Heat Mass Transfer, 41, 357–72.

    Article  MATH  Google Scholar 

  5. Harris, S. D., Ingham, D. B. and Pop, I. (1997). Free convection from a vertical plate in a porous media subjected to a sudden change in surface temperature. Int. Comm. Heat Mass Transfer, 24, 543–52.

    Article  Google Scholar 

  6. Harris, S. D., Ingham, D. B. and Pop, I. (1997). Free convection from a vertical plate in a porous medium subjected to a sudden change in surface heat flux. Transport in Porous Media, 26, 207–26.

    Article  Google Scholar 

  7. Harris, S. D., Ingham, D. B. and Pop, I. (1999). Unsteady mixed convection boundary-layer flow on a vertical surface in a porous medium. Int. J. Heat Mass Transfer, 42, 357–72.

    Article  MATH  Google Scholar 

  8. Harris, S. D., Ingham, D. B. and Pop, I. (2000). Transient free convection from a horizontal surface in a porous medium subjected to a sudden change in surface heat flux. Transport in Porous Media, 39, 97–117.

    Article  MathSciNet  Google Scholar 

  9. Harris, S. D., Ingham, D. B. and Pop, I. (2002). Heat transfer in the laminar boundary-layer flow past an impulsively started semi-infinite wedge: constant wall temperature case. Eur. J. Mech. B-Fluids, 21, 447–68.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ingham, D. B. and Pop, I. (ed.) (1998). Transport phenomena in porous media. Pergamon, Oxford.

    Google Scholar 

  11. Ingham, D. B. and Pop, I. (ed.) (2002). Transport phenomena in porous media II. Pergamon, Oxford.

    Google Scholar 

  12. Merkin, J. H. (1972). Free convection with blowing and suction. Int. J. Heat Mass Transfer, 15, 989–99.

    Article  MATH  Google Scholar 

  13. Nield, D. A. and Bejan, A. (1999). Convection in porous media (2nd edn). Springer, New York.

    Google Scholar 

  14. Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verh. III. int. Math. Kongr., Heidelberg, pp. 484-91. Teubner, Leipzig.

    Google Scholar 

  15. Smith, S. H. (1967). The impulsive motion of a wedge in a viscous fluid. J. Appl. Math. Phys. (ZAMP), 18, 508–22.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Harris, S.D., Ingham, D.B. (2004). Techniques for Solving the Boundary-Layer Equations. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics