A Porous Medium Model to Investigate the Red Cell Distribution Effect on Alveolar Respiration

Numerical simulations to CO diffusion in the alveolar region of the lungs
  • J. L. Lage
  • A. A. Merrikh
  • V. V. Kulish
Conference paper
Part of the NATO Science Series book series (NAII, volume 134)


Respiration is unquestionably a vital function of the human body, by which the oxygen available in the air is driven into the lungs where it reaches the blood and then carried to the cells everywhere in the body. It is also in the lungs that the gaseous product of the cellular combustion process (mainly CO2) gets transferred from the blood to the atmosphere. The understanding of the lung gas transport process is fundamental for prevention, diagnostics and therapy of many respiratory and cardiopulmonary diseases, e.g. hypoxemia, pulmonary sarcoidosis, fibrosis, cancer, asthma and emphysema.


Representative Elementary Volume Alveolar Region Pulmonary Sarcoidosis Lung Diffuse Representative Elementary Volume Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    American Thoracic Society (1987). Single breath carbon monoxide diffusing capacity (transfer factor): recommendations for a standard technique. Amer. Rev. Respiratory Diseases, 136, 1299–307.CrossRefGoogle Scholar
  2. [2]
    Carbonell, R. G. and Whitaker, S. (1984). Heat and mass transfer in porous media. In Fundamentals of transport phenomena in porous media (ed. J. Bear and M. Y. Corapcioglu), pp. 123-98. Martinus Nijhoff, Dordrecht.Google Scholar
  3. [3]
    Comroe, J. H., Forster, R. E., DuBois, A. B., Briscoe, W. A. and Carlsen, E. (1962). The lung; clinical physiology and pulmonary function tests (2nd edn). Year Book Medical Publishers, Chicago.Google Scholar
  4. [4]
    Federspiel, W. J. (1989). Pulmonary diffusing capacity: implications of twophase blood flow in capillaries. Respiratory Physiol, 77, 119–34.CrossRefGoogle Scholar
  5. [5]
    Federspiel, W. J. and Popel, A. S. (1986). A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasculature Res., 32, 164–9.CrossRefGoogle Scholar
  6. [6]
    Forster, R. E., Fowler, W. S., Bates, D. V. and Lingen, B. V. (1954). The absorption of carbon monoxide by the lungs during breath holding. J. Clinical Investigation, 33, 1135–45.CrossRefGoogle Scholar
  7. [7]
    Frank, A. O., Chuong, C. J. C. and Johnson, Jr, R. L. (1997). A finite element model of oxygen diffusion in the pulmonary capillaries. J. Appl. Physiol, 82, 2036–44.Google Scholar
  8. [8]
    Hsia, C. C. W., Chuong, C. J. C. and Johnson, Jr, R. L. (1995). Critique of conceptual basis of diffusing capacity estimates: a finite element analysis. J. Appl Physiol., 79, 1039–47.Google Scholar
  9. [9]
    Hsia, C. C. W., Chuong, C. J. C. and Johnson, Jr, R. L. (1997). Red cell distortion and conceptual basis of diffusion capacity estimates: finite element analysis. J. Appl. Physiol., 83, 1397–404.Google Scholar
  10. [10]
    Johnson, Jr, R. L., Spicer, W. S., Bishop, J. M. and Forster, R. E. (1960). Pulmonary capillary blood volume, flow, and diffusing capacity during exercise. J. Appl Physiol., 15, 893–902.Google Scholar
  11. [11]
    Koulich (Kulish), V. V., Lage, J. L., Hsia, C. C. W. and Johnson, Jr, R. L. (1999). A porous medium model of alveolar gas diffusion. J. Porous Media, 2, 263–75.zbMATHGoogle Scholar
  12. [12]
    Krogh, A. (1919). The number of distribution of capillaries in muscles with calculation of oxygen pressure head necessary for supplying the tissue. J. Physiol., 52, 409.Google Scholar
  13. [13]
    Kulish, V. V., Lage, J. L., Hsia, C. C. W. and Johnson, Jr, R. L. (2002). Threedimensional, unsteady simulation of alveolar respiration. ASME J. Biomech. Eng., 124, 609–16.CrossRefGoogle Scholar
  14. [14]
    Newth, C. J. L., Cotton, D. J. and Nadel, J. A. (1977). Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl Physiol., 43, 617–25.Google Scholar
  15. [15]
    Nozad, L, Carbonell, R. G. and Whitaker, S. (1985). Heat conduction in multiphase systems 1: theory and experiments in two-phase system. Chem. Eng. Sci., 40, 843–55.CrossRefGoogle Scholar
  16. [16]
    Patel, S. (2002). Evaluation of the resistance of membrane and erythrocytes to oxygen transport in pulmonary capillaries. Respiratory Physiol., 130, 181–7.Google Scholar
  17. [17]
    Philips compact encyclopedia (1999). (2nd edn). Octopus Publishing Group, London.Google Scholar
  18. [18]
    Roughton, F. J. W. and Forster, R. E. (1957). Relative importance of diffusion and chemical reaction rates in determining the rate of exchange of gases in the human lung, with special reference to true diffusing capacity of the pulmonary membrane and volume of blood in lung capillaries. J. Appl. Physiol., 11, 290–302.Google Scholar
  19. [19]
    Shields, T. W. (1994). General thoracic surgery. Williams & Wilkins, Baltimore.Google Scholar
  20. [20]
    Visual dictionary of the human body (1991). DK Publishing, New York.Google Scholar
  21. [21]
    Weibel, E. R. (1970). Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respiratory Physiol., 11, 54–75.CrossRefGoogle Scholar
  22. [22]
    Whitaker, S. (1991). Improved constraints for the principle of local thermal equilibrium. Ind. Eng. Chem. Res., 30, 983–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • J. L. Lage
    • 1
  • A. A. Merrikh
    • 1
  • V. V. Kulish
    • 2
  1. 1.Mechanical Engineering DepartmentSouthern Methodist UniversityDallasUSA
  2. 2.School of Mechanical & Production EngineeringNanyang Technological UniversitySingapore

Personalised recommendations