Towards a Physically Based Theory of High-Concentration-Gradient Dispersion in Porous Media

Experimental, theoretical and numerical studies
  • R. Schotting
  • A. J. Landman
Conference paper
Part of the NATO Science Series book series (NAII, volume 134)


Since the late fifties of the last century a vast amount of research effort has been put into modelling and understanding hydrodynamic dispersion in porous media. Hydrodynamic dispersion is the (macroscopic) result of additional spreading of dissolved matter due to local velocity variations that are caused by local permeability variations of the heterogeneous porous medium.


Porous Medium Breakthrough Curve Heterogeneous Porous Medium Longitudinal Dispersion Coefficient Dispersion Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, S. J. (1997). An experimental investigation of high concentration displacements in saturated porous media. PhD thesis. University of Western Australia.Google Scholar
  2. [2]
    Bastian, P. et al. (1997). UG-a flexible software toolbox for solving partial differential equations. Comp. Visualiz. Sci., 1, 27–40.zbMATHCrossRefGoogle Scholar
  3. [3]
    Ben Salah, M. D. (1965). Influence des contrastes de viscosité et de densité sur le déplacement en milieu poreux de deux fluides miscibles. Rev. Inst Franc. Petrol., 20, 1237–55.Google Scholar
  4. [4]
    Brigham, W. E., Reed, P. W. and Dew, J. N. (1961). Experiments on mixing during miscible displacements in porous media. Soc. Petroleum Eng. J., 1, 1–8.Google Scholar
  5. [5]
    Bues, M. A. and Zilliox, L. (1990). Déplacement miscible avec contrastes de densité et de viscosité en milieu poreux. Identification des paramètres de déplacement et stabilité en régime de dispersion méchanique. J. Hydrol., 120, 125–41.CrossRefGoogle Scholar
  6. [6]
    Egorov, A. (2003). Personal communication.Google Scholar
  7. [7]
    Fein, E. (1998). D3f-ein Programmpaket zur Modellierung von Dichteströmungen. GRS-139. GRS, Braunschweig, Germany.Google Scholar
  8. [8]
    Gelhar, L. W. (1987). Stochastic analysis of solute transport in saturated and unsaturated porous media. In Advances in transport phenomena in porous media (ed. J. Bear and M. Y. Corapcioglu), pp. 657-70. NATO ASI series. Martinus Nijhoff, Dordrecht.Google Scholar
  9. [9]
    Gelhar, L. W. and Axness, C. L. (1983). Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Res., 19, 161–80.CrossRefGoogle Scholar
  10. [10]
    Hassanizadeh, S. M. (1986). Derivation of basic equations of mass transport in porous media. Part 2. Generalized Darcy’s and Fick’s laws. Adv. Water Res., 9, 207–22.CrossRefGoogle Scholar
  11. [11]
    Hassanizadeh, S. M. and Leijnse, A. (1995). A non-linear theory of highconcentration-gradient dispersion in porous media. Adv. Water Res., 18, 203–15.CrossRefGoogle Scholar
  12. [12]
    Hassanizadeh, S. M., Leijnse, A., de Vries, W. J. and Stapper, R. A. M. (1990). Experimental study of brine transport in porous media. RIVM Report No. 728514005. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands.Google Scholar
  13. [13]
    Kempers, L. J. T. M. and Haas, H. (1994). The dispersion zone between fluids with different density and viscosity in a heterogeneous porous medium. J. Fluid Mech., 267, 299–324.CrossRefGoogle Scholar
  14. [14]
    Kretz, V., Berest, P., Hulin, J. P. and Salin, D. (2003). An experimental study of the effects of density and viscosity contrasts on macrodispersion in porous media. Water Resources Res., 39, 1032–40.CrossRefGoogle Scholar
  15. [15]
    Moser, H. (1995). Einfluβ der Salzkonzentration auf die hydrodynamische Dispersion im porösen Medium. PhD thesis. Technische Universität Berlin.Google Scholar
  16. [16]
    Newberg, M. A. and Foh, S. E. (1988). Measurement of longitudinal dispersion coefficients of gas flowing through porous media. SPE17731.Google Scholar
  17. [17]
    Schotting, R. J., Moser, H. and Hassanizadeh, S. M. (1999). Highconcentration-gradient dispersion in porous media: experiments, analysis and approximations. Adv. Water Res., 22, 665–80.CrossRefGoogle Scholar
  18. [18]
    Slobod, R. L. and Howlett, W. E. (1964). The effects of gravity segregation in laboratory studies of miscible displacement in vertical unconsolidated porous media. Soc. Petroleum Eng. J., 4, 1–8.Google Scholar
  19. [19]
    Welty, C. and Gelhar, L. W. (1991). Stochastic analysis of the effects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media. Water Resources Res., 27, 2061–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • R. Schotting
    • 1
  • A. J. Landman
    • 1
  1. 1.Section for Hydrology and Ecology Faculty of Civil Engineering and GeosciencesDelft University of TechnologyGA DelftThe Netherlands

Personalised recommendations