Effects of Anisotropy on Convection in Horizontal and Inclined Porous Layers

  • L. Storesletten
Conference paper
Part of the NATO Science Series book series (NAII, volume 134)


Thermally-driven convection in fluid-saturated porous media is of considerable interest in a variety of geophysical and technological problems. There are important applications in geothermal energy utilisation, oil reservoir modelling, building thermal insulation, nuclear waste disposals and chemical catalytic converters, to name but a few.


Porous Medium Rayleigh Number Porous Layer Critical Rayleigh Number Anisotropy Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bear, J. (1972). Dynamics of fluids in porous media. Elsevier, New York.Google Scholar
  2. [2]
    Castinel, G. and Combarnous, M. (1974). Critère d’apparition de 1a convection naturelle dans une couche poreuse anisotrope horizontale. Comptes-Rendus de l’Académie des Sciences de Paris, B27, 701-4.Google Scholar
  3. [3]
    Epherre, J. F. (1975). Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. Revue Gén. Thermique, 168, 949–50.Google Scholar
  4. [4]
    Kvernvold, O. and Tyvand, P. A. (1979). Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech., 90, 609–24.zbMATHCrossRefGoogle Scholar
  5. [5]
    McKibbin, R. (1985). Thermal convection in layered and anisotropic porous media: a review. In Convective flows in porous media (ed. R. A. Wooding and I. White), pp. 113-27. Department of Scientific and Industrial Research, Wellington, NZ.Google Scholar
  6. [6]
    Nield, D. A. and Bejan, A. (1999). Convection in porous media (2nd edn). Springer-Ver lag, New York.Google Scholar
  7. [7]
    Postelnicu, A. and Rees, D. A. S. (2001). The onset of convection in an anisotropic porous layer inclined at a small angle from the horizontal. Int. Comm. Heat Mass Transfer, 28, 641–50.CrossRefGoogle Scholar
  8. [8]
    Rees, D. A. S. and Postelnicu, A. (2001). The onset of convection in an inclined anisotropic porous layer. Int. J. Heat Mass Transfer, 44, 4127–38.zbMATHCrossRefGoogle Scholar
  9. [9]
    Rees, D. A. S., Storesletten, L. and Postelnicu, A. (2003). The onset of convection in an inclined anisotropic porous layer. Transport in Porous Media. In press.Google Scholar
  10. [10]
    Storesletten, L. (1993). Natural convection in a horizontal porous layer with anisotropic thermal diffusivity. Transport in Porous Media, 12, 19–29.CrossRefGoogle Scholar
  11. [11]
    Storesletten, L. (1998). Effects of anisotropy on convective flow through porous media. In Transport phenomena in porous media (ed. D. B. Ingham and I. Pop), pp. 261-83. Pergamon, Oxford.Google Scholar
  12. [12]
    Storesletten, L. and Tveitereid, M. (1999). Onset of convection in an inclined porous layer with anisotropic permeability. Appl. Mech. Eng., 4, 575–87.zbMATHGoogle Scholar
  13. [13]
    Trew, M. and McKibbin, R. (1994). Convection in anisotropic inclined porous layers. Transport in Porous Media, 17, 271–83.CrossRefGoogle Scholar
  14. [14]
    Tyvand, P. A. and Storesletten, L. (1991). Onset of convection in an anisotropic porous medium with oblique principal axes. J. Fluid Mech., 226, 371–82.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • L. Storesletten
    • 1
  1. 1.Department of MathematicsAgder University CollegeKristiansandNorway

Personalised recommendations