Chemical Synthesis of all Naturally Occurring Phosphorylated Inositol Phospholipids

  • Karol S. Bruzik
Conference paper
Part of the NATO Science Series book series (NAII, volume 129)


Studies of signal transduction pathways involving phosphoinositides constitute an important field of research in current cell physiology [1,2]. These compounds are now known to be involved in the transduction of the vast range of extracellular signals ranging from neurotransmission to vesicular trafficking [3]. Overall, of the eight major inositol phospholipids (PIPn) 1–8 (Figure 1) so far identified in cellular signaling pathways, only three, including phosphatidylinositol (1), phosphatidylinositol 4-phosphate (3) and 4,5- bisphosphate (7), are available in sufficient quantities by isolation from natural sources. Other phosphoinositides, while playing important roles in cell physiology, are formed either transiently, or are present in only very low concentrations, making their preparative isolation from natural sources impractical. Because of the above, the progress in unraveling the complex metabolic pathways involving inositol phospholipids has been reached largely after synthetic analogs of PIPn had become available [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].


Protective Group Benzoyl Chloride Inositol Phospholipid Deprotection Step Camphanic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The 2002 search of Chemical Abstract Service database under the “inositol” keyword resulted in 1500 to 3200 hits during each year between 1986 and 2001.Google Scholar
  2. 2.
    (a) Berridge, M. J. (1987) Ann. Rev. Biochem. 56, 159–193; (b) Duckworth, B. C, Cantley, L. C. (1996) in Handbook of Lipid Research, Bell, R. M.; Exton, J. H. and Prescott, S. M. Eds., Plenum Press, New York, Vol. 8, p. 125. (c) Tolias, K. F. and Cantley, L. C. (1999) Chem. Phys. Lipids 98, 69-77.CrossRefGoogle Scholar
  3. 3.
    (a) Rameh, L. E. and Cantley, L. C. (1999) J. Biol. Chem. 274, 8347–50. (b) Hinchliffe, K. A., Ciruela, A. and Irvine, R. F. (1998) Biochim. Biophys. Acta 1436, 87-104. (c) Brown, F. D., Rozelle, A. L., Yin, H. L. Balla, T. and Donaldson, J. G. (2001) J. Cell. Biol. 154, 1007-17. (d) Takenawa. T. and Itoh, T. (2001) Biochim. Biophys. Acta. 1533, 190-206. (e) Exton, J. H. (1996) Annu. Rev. Pharmacol. Toxicol. 36, 481-509. (f) Cremona, O. and De Camilli, P. (2001) J. Cell Sci. 114, 1041-52. (g) Jones, D. R. and Varela-Nieto, I. (1999) Mol. Med. 5, 505-14.CrossRefGoogle Scholar
  4. 4.
    Reviews on synthesis of phosphoinositides: (a) Potter, B. L. V. (1990) Nat. Prod. Rep. 1–24. (b) Billington, D. C. (1989) Chem. Soc. Rev. 18, 83-122. (c) Potter, B. V. L. and Lampe, D. (1995) Angew. Chem. Int. Ed. Engl. 34, 1933-1972. (d) Billington, D. C. (1993) “The Inositol Phosphates: Chemical Synthesis and Biological Significance”, VCH, Weinheim; (e) Prestwich, G. D. (1996) Acc. Chem. Res. 29, 503-513.Google Scholar
  5. 5.
    (a) Inositol Phosphates and Derivatives. Synthesis, Biochemistry, and Therapeutic Potential, Reitz, A. B. Ed., ACS Symp. Ser. 1991, 463. (b) Phosphoinositides: Chemistry, Biochemistry and Biomedical Applications“, Bruzik, K. S. Ed., ACS Symp. Ser. 1998, 718. Google Scholar
  6. 6.
    Synthesis of PI-3-P: (a) Bruzik, K. S. and Kubiak, R. J. (1995) Tetrahedron Lett. 36, 2415–2418. (b) Wang, D.-S. and Chen, C.-S. (1996) J. Org. Chem. 61, 5905-5910. (c) Chen, J., Feng, L. and Prestwich, G. D. (1998) J. Org. Chem. 63, 6511-6522. (d) Painter, G. F., Grove, S. J. A., Gilbert, I. H., Holmes, A. B., Raithby, P. R., Hill, M. L., Hawkins, P. T. and Stephens, L. R. (1999) J. Chem. Soc, Perkin Trans 1 8, 923-936. (e) Falck, J. R., Krishna, U. M., Katipally, K. R., Capdevila, J. H. and Ulug, E. T. (2000) Tetrahedron Lett. 41, 42714275.Google Scholar
  7. 7.
    Synthesis of PI-4-P: ref. 6c.Google Scholar
  8. 8.
    Synthesis of PI-5-P: (a) Peng, J. and Prestwich, G. D. (1998) Tetrahedron Lett. 39, 3965–3968. (b) ref. 6d. (c) ref. 6e.Google Scholar
  9. 9.
    PI-3, 4-P2: (a) ref. 9b. (b) Thum, O., Chen, J. and Prestwich, G. D. (1996) Tetrahedron Lett. 37, 9017–9020; (c) ref. 6b. (d) Reddy, K. K., Ye, J., Falck, J. R. and Capdevila, J. H. (1997) Bioorg. Med. Chem. Lett. 7, 2115-2116. (e) Reddy, K. K., Rizo, J. and Falck, J. R. (1997) Tetrahedron Lett. 38, 4729-4730. (f) Grove, S. J. A., Holmes, A. B., Painter, G. F., Hawkins, P. T. and Stephens, L. R. (1997) J. Chem. Soc. Chem. Commun. 17, 1635-1639. (g) Qiao, L., Hu, Y., Nan, F., Powis, G. and Kozikowski, A. P. (2000) Org. Lett. 2, 115-117.Google Scholar
  10. 10.
    PI-3, 5-P2: (a) ref. 12f. (b) Riley, A M. and Potter, B. V. L. (1998) Tetrahedron Lett. 39, 6769–6772. (c) ref. 8a.Google Scholar
  11. 11.
    PI-4, 5-P2: (a) Dreef, C. E., Elie, C. J. J., Hoogerhout, P., Van der Marel, G. A. and van Boom, J. H. (1988) Tetrahedron Lett. 29, 6513–16; (b) Watanabe, Y., Nakamura, T. and Mitsumoto, H. (1997) Tetrahedron Lett. 38, 7407-7419. (c) Chen, J. and Prestwich, G. D. (1998) J. Org. Chem. 63, 430-431. (d) Falck, J. R., Krishna, U. M. and Capdevila, J. H. (1999) Tetrahedron Lett. 40, 8771-8774. (e) ref. 9g.Google Scholar
  12. 12.
    PI-3, 4, 5-P3: (a) Falck, J. R. and Abdali, A. in Inositol Phosphates and Derivatives. Synthesis, Biochemistry, and Therapeutic Potential, Reitz, A. B. Ed., (1991) ACS Symp. Ser. 463, 145–154. (b) Gou, D.-M. and Chen, C.-S. (1994) J. Chem. Soc, Chem. Commun. 18, 2125-6. (c) Watanabe, Y., Hirofuji, H. and Ozaki, S. (1994) Tetrahedron Lett. 35, 123-124. (d) ref. 6b. (e) Watanabe, Y., Tomioka, M. and Ozaki, S. (1995) Tetrahedron 51, 8969-8976. (f) Reddy, K. K., Saady, M. and Falck, J. R (1995) J. Org. Chem. 60, 3385-3390. (g) Chen, J., Profit, A. A and Prestwich, G. D (1996) J. Org. Chem. 61, 6305-6312. (h) ref. 6b. (i) ref. 9f. (j) ref. 6e. (k) Jiang, T., Sweeney, G., Rudolf, M. T., Klip, A., Traynor-Kaplan, A. and Tsien, R. Y. (1998) J. Biol. Chem. 273, 11017. (1) réf. 9g. (m) Estevez, V. A. and Prestwich, G. D. (1991) J. Am. Chem. Soc. 113, 9885.Google Scholar
  13. 13.
    Unsaturated PI-3, 4, 5-P3: (a) Gaffney, P. R. J. and Reese, C. B. (1997) Bioorg. Med. Chem. Lett. 7, 3171–3176. (b) Gaffney, P. R. J. and Reese, C. R. (2001) J. Chem. Soc. Perkin Trans I 10, 192-205. (c) Watanabe, Y. and Nakatomi, M. (1999) Tetrahedron 55, 9743-9754.Google Scholar
  14. 14.
    (a) Ozaki, S. and Lei, L. in “Carbohydrates in Drug Design”, Witczak, Z. J., Nieforth, K. A. Eds. Marcel Dekker, New York, p. 343–384. (b) Sculimbrene, B. R. and Miller, S. J. (2001) J. Am. Chem. Soc. 123, 10125-10126.Google Scholar
  15. 15.
    (a) Bruzik, K. S. and Salamonczyk, G. M. (1989) Carbohydr. Res. 195, 67–73. (b) Bruzik and K. S., Tsai, M.-D. (1992) J. Am. Chem. Soc. 114, 6361-6374. (c) Pietrusiewicz, K. M., Salamonczyk, G. M., Bruzik, K. S. and Wieczorek, W. (1992) Tetrahedron 48, 552342. 16. Watanabe, Y. ( 1998) in “Phosphoinositides: Chemistry, Biochemistry and Biomedical Applications”, ACS Symp.Ser. 718, 197-211.Google Scholar
  16. 17.
    (a) Kubiak, R. J. and Bruzik, K. S. (2003) J. Org. Chem. 66, in press; (b) Kubiak, R. J. and Bruzik, K. S. (1995) Tetrahedron Lett. 36, 2415-2418.Google Scholar
  17. 18.
    Kubiak, R. J. and Bruzik, K. S. (1997) Bioorg. Med. Chem. Lett. 7, 1231–1234. 19. Kubiak, R. J., Yue, X. and Bruzik, K. S. (1998) in “Phosphoinositides: Chemistry, Biochemistry and Biomedical Applications, ACS Symp. Ser. 718, 180-196. CrossRefGoogle Scholar
  18. 20.
    (a) Kubiak, R.J., Yue, X., Mihai, C, Hondal, R. J., Tsai, M.-D. and Bruzik, K. S. (2001) Biochemistry 41, 5422–5432. (b) Kravchuk, A. V., Zhao, L., Kubiak, R. J., Bruzik, K. S. and Tsai, M.-D. (2001) Biochemistry 40, 5433-5439.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Karol S. Bruzik
    • 1
  1. 1.Department of Medicinal Chemistry and PharmacognosyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations