Biological Activities of the Phosphoinositide Derivatives, the Glycerophosphoinositols

  • Stefania Mariggio’
  • Beatrice Maria Filippi
  • Cristiano Iurisci
  • Daniela Corda
Conference paper
Part of the NATO Science Series book series (NAII, volume 129)


The phosphoinositides and the inositol-containing compounds in general are essential components of cell machineries involved in virtually all cell functions. The glycerophosphoinositols are water-soluble derivatives of the membrane phosphoinositides, formed by the sequential action of a phospholipase A2 and a lysolipase. These compounds are being investigated for two reasons: first, since they are detectable in cells, formed upon cell stimulation, and able to modulate the activity of cellular GTPases, they are potential cell regulators, the mechanism of action and metabolism of which remain to be fully clarified; second, since they are water-soluble compounds that freely permeate the cell membrane, they are potential lead compounds for drug development.


Actin Cytoskeleton Stress Fiber Inositol Phosphate Membrane Phosphoinositides Potential Cell Regulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling, Nature 361, 315–325.CrossRefGoogle Scholar
  2. 2.
    Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses, FASEB J. 9, 484-496.Google Scholar
  3. 3.
    Corda, D. and Falasca, M. (1996) Glycerophosphoinositols as potential markers of ras-induced transformation and novel second messengers, Anticancer Res. 16, 1341–1350.Google Scholar
  4. 4.
    Exton, J.H. (1999) Regulation of phospholipase D, Biochim. Biophys. Acta 1439, 121–133.CrossRefGoogle Scholar
  5. 5.
    Wang, A. and Dennis, E.A. (1999) Mammalian lysophospholipases, Biochim. Biophys. Acta 1439, 1–16.CrossRefGoogle Scholar
  6. 6.
    Six, D.A. and Dennis, E.A. (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization, Biochim. Biophys. Acta 1488, 1–19.CrossRefGoogle Scholar
  7. 7.
    Rhee, S.G. (2001) Regulation of phosphoinositide-specific phospholipase C, Annu. Rev. Biochem. 70, 281–312.CrossRefGoogle Scholar
  8. 8.
    Hirabayashi, T. and Shimizu, T. (2000) Localization and regulation of cytosolic phospholipase A(2), Biochim. Biophys. Acta 1488, 124–138.CrossRefGoogle Scholar
  9. 9.
    Corda, D., Iurisci, C, and Berrie, C.P. (2002) Biological activities and metabolism of the lysophosphatidylinositol and glycerophosphoinositols, Biochim. Biophys. Acta 1582, 52–69.CrossRefGoogle Scholar
  10. 10.
    Irvine, R.F. and Schell, M.J. (2001) Back in the water: the return of the inositol phosphates, Nat. Rev. Mol. Cell Biol. 2, 327–338.CrossRefGoogle Scholar
  11. 11.
    Cullen, P.J., Cozier, G.E., Banting, G., and Mellor, H. (2001) Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking, Curr. Biol. 11, R882-R993.Google Scholar
  12. 12.
    De Matteis, M.A., Godi, A., and Corda, D. (2002) Phosphoinositides and the Golgi complex, Curr. Opin. Cell Biol. 14, 434–447.CrossRefGoogle Scholar
  13. 13.
    Dowler, S., Currie, R.A., Campbell, D.G., Deak, M., Kular, G., Downes, C.P., and Alessi, D.R. (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities, Biochem. J. 351, 19–31.CrossRefGoogle Scholar
  14. 14.
    Irvine, R.F., Hemington, N., and Dawson, R.M. (1978) The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain, Biochem. J. 176, 475–484.Google Scholar
  15. 15.
    Kemp, P., Hübscher, G., and Hawthorne, J.N. (1961) Phosphoinositides 3. Enzymic hydrolysis of inositol-containing phospholipids., Biochem. J. 79, 193–200.Google Scholar
  16. 16.
    Atherton, R.S. and Hawthorne, J.N. (1968) The phosphoinositide inositolphos-phohydrolase of guineapig intestinal mucosa., Eur. J. Biochem. 4, 68–75.CrossRefGoogle Scholar
  17. 17.
    Lapetina, E.G. and Michell, R.H. (1973) A membrane-bound activity catalysing phosphatidylinositol breakdown to 1, 2-diacylglycerol, D-myoinositol l:2-cyclic phosphate an D-myoinositol 1-phosphate. Properties and subcellular distribution in rat cerebral cortex, Biochem. J. 131, 433–442.Google Scholar
  18. 18.
    Chaminade, B., Le Balle, F., Fourcade, O., Nauze, M., Delagebeaudeuf, C, Gassama-Diagne, A, Simon, M.F., Fauvel, J., and Chap, H. (1999) New developments in phospholipase A2, Lipids 34, S49–SGoogle Scholar
  19. 19.
    Alonso, T., Morgan, R.O., Marvizon, J.C., Zarbl, H. and Santos, E. (1988) Malignant trasformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways, Proc. Natl. Acad. Sci. U.S.A. 85, 4271–4275.CrossRefGoogle Scholar
  20. 20.
    Alonso, T. and Santos, E. (1990) Increased intracellular glycerophosphoinositol is a biochemical marker for transformation by membrane-associated and cytoplasmic oncogenes, Biochem. Biophys. Res. Commun. 171, 14–19.CrossRefGoogle Scholar
  21. 21.
    Valitutti, S., Cucchi, P., Colletta, G., Di Filippo, C, and Corda, D. (1991) Transformation by the k-ras oncogene correlates with increases in phospholipase A2 activity, glycerophosphoinositol production and phosphoinositide synthesis in thyroid cells, Cell. Signal. 3, 321–332.CrossRefGoogle Scholar
  22. 22.
    Falasca, M., Marino, M., Carvelli, A., Iurisci, C, Leoni, S., and Corda, D. (1996) Changes in the levels of glycerophosphoinositols during differentiation of hepatic and neuronal cells, Eur. J. Biochem. 241, 386–392.CrossRefGoogle Scholar
  23. 23.
    French, P.J., Bunce, CM., Stephens, L.R., Lord, J.M., McConnell, F.M., Brown, G., Creba, J.A., and Michell, R.H. (1991) Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes, Proc. Roy. Soc. Lond. Series B: Biol. Sci. 245, 193–201.CrossRefGoogle Scholar
  24. 24.
    Bunce, CM., French, P.J., Allen, P., Mountford, J.C., Moor, B., Greaves, M.F., Michell, R.H., and Brown, G. (1993) Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts, Biochem. J. 289, 667–673.Google Scholar
  25. 25.
    Mountford, J.C, Bunce, CM., French, P.J., Michell, R.H., and Brown, G. (1994) Intracellular concentrations of inositol, glycerophosphoinositol and inositol pentakisphosphate increase during haemopoietic cell differentiation, Biochim. Biophys. Acta 1222, 101–108.CrossRefGoogle Scholar
  26. 26.
    Berrie, C.P., Dragani, L.K., van der Kaay, J., Iurisci, C, Brancaccio, A., Rotilio, D., and Corda, D. (2002) Maintenance of PtdIns45P2 pools under limiting inositol conditions, as assessed by liquid chromatography-tandem mass spectrometry and PtdIns45P2 mass evaluation in Ras-transtormed cells., Eur. J. Cancer 38, 2463–2475.CrossRefGoogle Scholar
  27. 27.
    Falasca, M. and Corda, D. (1994) Elevated levels and mitogenic activity of lysophosphatidylinositol in kras-transformed epithelial cells, Eur. J. Biochem. 221, 383–389.CrossRefGoogle Scholar
  28. 28.
    Falasca, M., Silletta, M.G., Carvelli, A., Di Francesco, AL., Fusco, A., Ramakrishna, V., and Corda, D. (1995) Signalling pathways involved in the mitogenic action of lysophosphatidylinositol, Oncogene 10, 2113-2124.Google Scholar
  29. 29.
    Berrie, C.P., Iurisci, C, and Corda, D. (1999) Membrane transport and in vitro metabolism of the Ras cascade messenger, glycerophosphoinositol 4-phosphate, Eur. J. Biochem. 266, 413–419.CrossRefGoogle Scholar
  30. 30.
    Palmer, F.B. (1986) Metabolism of lysopolyphosphoinositides by rat brain and liver microsomes, Biochem. Cell. Biol. 64, 117–125.CrossRefGoogle Scholar
  31. 31.
    Iacovelli, L., Falasca, M., Valitutti, S., D’Arcangelo, D., and Corda, D. (1993) Glycerophosphoinositol 4phosphate, a putative endogenous inhibitor of adenylylcyclase, J. Biol. Chem. 268, 20402–20407.Google Scholar
  32. 32.
    Falasca, M., Carvelli, A., Iurisci, C, Qiu, R.G., Symons, M.H., and Corda, D. (1997) Fast receptorinduced formation of glycerophosphoinositol-4-phosphate, a putative novel intracellular messenger in the Ras pathway, Mol. Biol. Cell 8, 443–453.Google Scholar
  33. 33.
    De Vries, L., Zheng, B., Fischer, T., Elenko, E., and Farquhar, M.G. (2000) The regulator of G protein signaling family, Annu. Rev. Pharmacol. Toxicol. 40, 235–271.CrossRefGoogle Scholar
  34. 34.
    Cismowski, M.J., Takesono, A., Bernard, M.L., Duzic, E., and Lanier, S.M. (2001) Receptor-independent activators of heterotrimeric G-proteins, Life Sci. 68, 2301–2308.CrossRefGoogle Scholar
  35. 35.
    Mancini, R., Piccolo, E., Mariggio’, S., Filippi, B.M., Iurisci, C, Pertile, P., Berrie, C.P., and Corda, D. (in press) Reorganization of the actin cytoskeleton by the phosphoinositide metabolite glycerophosphoinositol 4-phosphate, Mol Biol. Cell Google Scholar
  36. 36.
    Ridley, A.J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell 70, 389–399.CrossRefGoogle Scholar
  37. 37.
    Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D., and Hall, A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410.CrossRefGoogle Scholar
  38. 38.
    Zohn, I.M., Campbell, S.L., Khosravi-Far, R., Rossman, K.L., and Der, C.J. (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested, Oncogene 17, 1415–1438.CrossRefGoogle Scholar
  39. 39.
    Nobes, CD. and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell 81, 53–62.CrossRefGoogle Scholar
  40. 40.
    Kjoller, L. and Hall, A. (1999) Signaling to Rho GTPases, Exp. Cell Res. 253, 166–179.CrossRefGoogle Scholar
  41. 41.
    Nobes, CD., Hawkins, P., Stephens, L., and Hall, A. (1995) Activation of the small GTP-binding proteins rho and rac by growth factor receptors, J. Cell Sci. 108, 225–233.Google Scholar
  42. 42.
    Lio, Y.C, Reynolds, L.J., Balsinde, J., and Dennis, E.A. (1996) Irreversible inhibition of Ca(2+)independent phospholipase A2 by methyl arachidonyl fluorophosphonate, Biochim. Biophys. Acta 1302, 55-60.Google Scholar
  43. 43.
    Takai, Y, Sasaki, T., and Matozaki, T. (2001) Small GTP-binding proteins, Physiol. Rev. 81, 153–208.Google Scholar
  44. 44.
    Bishop, A.L. and Hall, A. (2000) Rho GTPases and their effector proteins, Biochem. J. 348, 241–255.CrossRefGoogle Scholar
  45. 45.
    Habets, G.G., Scholtes, E.H., Zuydgeest, D., van der Kammen, R.A., Stam, J.C, Berns, A., and Collard, J.G. (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins, Cell 17, 537–549.CrossRefGoogle Scholar
  46. 46.
    Michiels, F. Habets, G.G., Stam, J.C, van der Kammen, R.A., and Collard, J.G. (1995). A role for Rac in Tiaml-induced membrane ruffling and invasion, Nature 375, 338–340.CrossRefGoogle Scholar
  47. 47.
    Patton-Vogt, J.L. and Henry, S.A. (1998) GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae, Genetics 149, 1707–1715.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Stefania Mariggio’
    • 1
  • Beatrice Maria Filippi
    • 1
  • Cristiano Iurisci
    • 1
  • Daniela Corda
    • 1
  1. 1.Department of Cell Biology and OncologyIstituto di Ricerche Farmacologiche “Mario Negri”Santa Maria Imbaro, ChietiItaly

Personalised recommendations