Protein Assembly to Mine the Human Genome

  • Bradley L. Nilsson
  • Matthew B. Soellner
  • Ronald T. Raines
Conference paper
Part of the NATO Science Series book series (NAII, volume 129)


The human genome contains 30,000 or so genes [1,2]. Scientists from a broad range of disciplines are now working to reveal the structure and function of the proteins encoded by these genes. Their findings could lead to the solution of a multitude of problems in biology and medicine. In addition to structure-function analyses of extant proteins, chemical biologists are working to create new proteins with desirable properties, either by de novo design or by altering natural frameworks.


Diphenyl Phosphine Amide Bond Formation Native Chemical Ligation International Human Genome Sequencing Consortium Diphenyl Phosphine Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome, Nature 409, 860–921.CrossRefGoogle Scholar
  2. 2.
    Venter, C.J.,. etal. (2001) The sequence of the human genome, Science 291, 304–1351.CrossRefGoogle Scholar
  3. 3.
    Dawson, P.E. and Kent, S.B.H. (2000) Synthesis of native proteins by chemical ligation, Annu. Rev. Biochem. 69, 23–960.CrossRefGoogle Scholar
  4. 4.
    Wieland, T., Bokelmann, E., Bauer, L., Lang, H.U., Lau, H. and Schafer, W. (1953) Polypeptide syntheses. VIII. Formation of sulfur containing peptides by the intramolecular migration of aminoacyl groups, Liebigs Ann. Chem. 583, 29–149.Google Scholar
  5. 5.
    Dawson, P.E., Muir, T.W., Clark-Lewis, I. and Kent, S.B.H. (1994) Synthesis of proteins by native chemical ligation, Science 266, 776–779.CrossRefGoogle Scholar
  6. 6.
    Muir, T.W., Sondhi, D. and Cole, P.A. (1998) Expressed protein ligation: A general method for protein engineering, Proc. Natl. Acad. Sci., USA 95, 705–6710.CrossRefGoogle Scholar
  7. 7.
    Evans, T.C., Benner, J. and Xu, M.Q. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element, Protein Sci. 7, 256–2264.CrossRefGoogle Scholar
  8. 8.
    Hondal, R.J., Nilsson, B.L. and Raines, R.T. (2001) Selenocysteine in native chemical ligation and expressed protein ligation, J. Am. Chem. Soc. 123, 5140–5141.CrossRefGoogle Scholar
  9. 9.
    Hondal, R.J. and Raines, R.T. (2002) Semisynthesis of proteins containing selenocysteine, Methods Enzymol. 347, 70–83.CrossRefGoogle Scholar
  10. 10.
    Gieselman, M.D., Xie, L. and van der Donk, W.A. (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation, Org. Lett. 3, 1331–1334.CrossRefGoogle Scholar
  11. 11.
    Quaderer, R., Sewing, A. and Hilvert, D. (2001) Selenocysteine-mediated native chemical ligation, Helvetica Chim. Acta 84, 1197–1206.CrossRefGoogle Scholar
  12. 12.
    Arnold, U., Hinderaker, M.P., Nilsson, B.L., Huck, B.R., Gellman, S.H. and Raines, R.T. (2002) Protein prosthesis: A semisynthetic enzyme with a D-peptide reverse turn, J. Am. Chem. Soc. 124, 8522–8523.CrossRefGoogle Scholar
  13. 13.
    Staudinger, H. and Meyer, J. (1919) New organic compounds of phosphorus. III. Phosphinemethylene derivatives and phosphinimines, Helvetica Chim. Acta 2, 635–46.CrossRefGoogle Scholar
  14. 14.
    Staudinger, H. (1961) Arbeitserinnerungen, Dr. Alfred Hüthig Verlag GmbH., Heidelberg, Germany, pp. 30-35.Google Scholar
  15. 15.
    Bosch, I., Romea, P., Urpi, F. and Vilarrasa, J. (1993) Alternative procedures for the macrolactamisation of D-azido acids, Tetrahedron Lett. 34, 4671–4674.CrossRefGoogle Scholar
  16. 16.
    Saxon, E. and Bertozzi, CR. (2000) Designing chemical reactions for a cellular environment: Cell surface engineering via a modified Staudinger reaction, Science 287, 2007–2010.CrossRefGoogle Scholar
  17. 17.
    Nilsson, B.L., Kiessling, L.L. and Raines, R.T. (2000) Staudinger ligation: A peptide from a thioester and azide, Org. Lett. 2, 1939–1941CrossRefGoogle Scholar
  18. 18.
    Nilsson, B.L., Kiessling, L.L. and Raines, R.T. (2001) High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide, Org. Lett. 3, 9–12.CrossRefGoogle Scholar
  19. 19.
    Lu, W.Y., Qasim, M.A. and Kent, S.B.H. (1996) Comparative total syntheses of turkey ovomucoid third domain by both stepwise solid phase peptide synthesis and native chemical ligation, J. Am. Chem. Soc. 118, 8518–8523.CrossRefGoogle Scholar
  20. 20.
    Soellner, M.B., Nilsson, B.L. and Raines, R.T. (2002) Staudinger ligation of a-azido acids retains stereochemistry, J. Org. Chem. 67, 4993–4996.CrossRefGoogle Scholar
  21. 21.
    Farrington, G.K., Kumar, A. and Wedler, F.C. (1989) A convenient synthesis of diethyl (mercaptomethyl)phosphonate, Org. Prep. Proced. Int. 21, 390–392.CrossRefGoogle Scholar
  22. 22.
    http://www.nobel.seGoogle Scholar
  23. 23.
    Cane, D.E., Walsh, C.T. and Khosla, C. (1998) Harnessing the biosynthetic code: Combinations, permutations, and mutations, Science 282, 63–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Bradley L. Nilsson
    • 1
  • Matthew B. Soellner
    • 1
  • Ronald T. Raines
    • 1
  1. 1.Department of Chemistry and Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations