Multivalency in Biological Systems

  • L. L. Kiessling
  • A. C. Lamanna
Part of the NATO Science Series book series (NAII, volume 129)


Multivalent interactions are important in a variety of biological processes [1, 2, 3]. In these cases, a multivalent ligand can bind to one or a number of receptors with enhanced functional affinity (the apparent affinity)[2, 4, 5, 6, 7, 8, 9]. In addition, a multivalent ligand can promote receptor clustering, which can lead to signal transduction. A multivalent ligand is composed of a scaffold or backbone to which a particular number (valency) of identical or non-identical epitopes are attached. Many protein-carbohydrate interactions, including those involved in processes such as viral entry, cell surface adhesion, and host-pathogen interactions utilize a multivalent display of epitopes for binding. Other important multivalent interactions involve protein-protein interactions, for example, those that mediate the formation of the immune synapse at the T cell-B cell junction [10].


Chemotactic Response Receptor Cluster Bacterial Chemotaxis Multivalent Interaction Aspartate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiessling, L.L., Gestwicki, J.E., and Strong, L.E. (2000) Synthetic multivalent ligands in the exploration of cell surface interactions, Curr. Opin. Chem. Biol. 4, 696–703.CrossRefGoogle Scholar
  2. 2.
    Lee, Y.C. and Lee, R.T. (1995) Carbohydrate-protein interactions: Basis of glycobiology, Acc. Chem. Res. 28, 321–327.CrossRefGoogle Scholar
  3. 3.
    Mammen, M., Choi, S.-K., and Whitesides, G.M. (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors,. Angew. Chem. Int. Ed. Engl. 37, 2755-2794.Google Scholar
  4. 4.
    Roy, R. (1996) Synthesis and some applications of chemically defined multivalent glycoconjugates, Curr. Opin. Struct. Biol. 6, 692–702.CrossRefGoogle Scholar
  5. 5.
    Kiessling, L.L. and Pohl, N.L. (1996) Strength in numbers: non-natural polyvalent carbohydrate derivatives, Chem. Biol. 3, 71–77.CrossRefGoogle Scholar
  6. 6.
    Ludquist, J.J. and Toone, E.J. (2002) The cluster glycoside effect, Chem. Rev. 102, 555–578.CrossRefGoogle Scholar
  7. 7.
    Lindhorst, T.K. (2002) Artificial multivalent sugar ligands to understand and manipulate carbohydrateprotein interactions, Top. Curr. Chem. 218, 201–235.CrossRefGoogle Scholar
  8. 8.
    Brewer, CF., Miceli, M.C., and Baum, L.G. (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions, Curr. Opin. Struct. Biol. 12, 616–623.CrossRefGoogle Scholar
  9. 9.
    Houseman, B.T. and Mrksich, M. (2002) Model systems for studying polyvalent carbohydrate binding interactions, Top. Curr. Chem. 218, 1–44.CrossRefGoogle Scholar
  10. 10.
    Cochran, J.R., Aivazian, D., Cameron, TO., and Stern, L.J. (2001) Receptor clustering and transmembrane signaling in T cells, Trends Biochem. Sci. 26, 304–310.CrossRefGoogle Scholar
  11. 11.
    Weis, W.I. and Drickamer, K. (1996) Structural basis of lectin-carbohydrate recognition, Annu. Rev. Biochem. 65, 441–473.CrossRefGoogle Scholar
  12. 12.
    Weis, W.I. and Drickamer, K. (1994) Trimeric structure of a C-type mannose-binding protein,. Structure 2, 1227-1240.Google Scholar
  13. 13.
    Derewenda, Z, Yariv, J., Helliwell, J.R., Kalb, A.J., Dodson, E.J., Papiz, M.Z., Wan, T., and Campbell, J. (1989) The structure of the saccharide-binding site of concanavalin-A, EMBO J. 8, 2189–2193.Google Scholar
  14. 14.
    Mammen, M., Dahmann, G., and Whitesides, G.M. (1995) Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition, J. Med. Chem. 38, 4179–4190.CrossRefGoogle Scholar
  15. 15.
    Fan, E.K., Merritt, E.A., Verlinde, C.L.M.J, and Hoi, W.G.J. (2000) AB5 toxins: structures and inhibitor design, Curr. Opin. Struct. Biol. 10, 680–686.CrossRefGoogle Scholar
  16. 16.
    Kitov, P.I, Sadowska, J.M., Mulvey, G., Armstrong, G.D., Ling, H., Pannu, N.S., Read, R.J., and Bundle, D.R. (2000) Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands,. Nature 403, 669-672.Google Scholar
  17. 17.
    Fan, E., Zhang, Z., Minke, W.E., Hou, Z., Verlinde, C.L.M.J., and Hol, W.G.J. (2000) High affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design, J. Am. Chem. Soc. 122, 2663–2664.CrossRefGoogle Scholar
  18. 18.
    Weiss, A. and Schlessinger, J. (1998) Switching signals on or off by receptor dimerization, Cell 94, 277–280.CrossRefGoogle Scholar
  19. 19.
    Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity, Cell 61, 203–212.CrossRefGoogle Scholar
  20. 20.
    Cochran, J.R. and Stern, L.J. (2000) A diverse set of oligomeric class II MHC-peptide complexes for probing T-cell receptor interactions, Chem. Biol. 7, 683–696.CrossRefGoogle Scholar
  21. 21.
    Gestwicki, J.E., Cairo, C.W., Strong, LE., Oetjen, K.A., and Kiessling, L.L. (2002) Influencing receptorligand binding mechanisms with multivalent ligand architecture, J. Am. Chem. Soc. 124, 14922–14933.CrossRefGoogle Scholar
  22. 22.
    Kiessling, L.L., Strong, L.E., and Gestwicki, J.E. (2000) Principles for multivalent ligand design, Annu. Rep. Med. Chem. 35, 321–330.CrossRefGoogle Scholar
  23. 23.
    Gestwicki, J.E, Strong, L.E, Cairo, C.W, Boehm, F.J., and Kiessling, L.L. (2002) Cell aggregation by scaffolded receptor clusters, Chem. Biol. 9, 163–163.CrossRefGoogle Scholar
  24. 24.
    Cairo, C.W, Gestwicki, J.E, Kanai, M, and Kiessling, L.L. (2002) Control of multivalent interactions by binding epitope density, J. Am. Chem. Soc. 124, 1615–1619.CrossRefGoogle Scholar
  25. 25.
    Zanini, D. and Roy, R. (1997) Synthesis of new a-thiosialodendrimers and their binding properties to the sialic specific lectin from Limas flavus, J. Am. Chem. Soc. 119, 2088–2095.CrossRefGoogle Scholar
  26. 26.
    Lynn, D.M., Kanaoka, S, and Grubbs, R.H. (1996) Living ring-opening metathesis polymerization in aqueous media catalyzed by well-defined ruthenium carbene complexes, J. Am. Chem. Soc. 118, 784–790.CrossRefGoogle Scholar
  27. 27.
    Trnka, T.M. and Grubbs, R.H. (2001) The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story, Acc. Chem. Res. 34, 18–29.CrossRefGoogle Scholar
  28. 28.
    Strong, L.E. and Kiessling, L.L. (1999) A general synthetic route to defined, biologically active multivalent arrays, J. Am. Chem. Soc. 121, 6193–6196.CrossRefGoogle Scholar
  29. 29.
    Owen, R.M, Gestwicki, J.E, Young, T, and Kiessling, L.L. (2002) Synthesis and applications of endlabeled neoglycopolymers, Org. Lett. 4, 2293–2296.CrossRefGoogle Scholar
  30. 30.
    Gordon, E.J, Gestwicki, J.E, Strong, L.E, and Kiessling, L.L. (2000) Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor-ligand interactions, Chem. Biol. 7, 9–16.CrossRefGoogle Scholar
  31. 31.
    Mortell, K.H, Weatherman, R.V, and Kiessling, L.L. (1996) Recognition specificity of neoglycopolymers prepared by ring-opening metathesis polymerization, J. Am. Chem. Soc. 118, 2297–2298.CrossRefGoogle Scholar
  32. 32.
    Kanai, M, Mortell, K.H, and Kiessling, L.L. (1997) Varying the size of multivalent ligands: the dependence of concanavalin A binding on neoglycopolymer length, J. Am. Chem. Soc. 119, 9931–9932.CrossRefGoogle Scholar
  33. 33.
    Gestwicki, J.E, Strong, L.E, and Kiessling, L.L. (2000) Visualization of single multivalent receptorligand complexes by transmission electron microscopy, Angew. Chem. Int. Ed. Engl. 39, 4567–4570.CrossRefGoogle Scholar
  34. 34.
    Spencer, D.M., Wandless, T.J, Schreiber, S.L, and Crabtree, G.R. (1993) Controlling signal transduction with synthetic ligands, Science 262, 1019–1024.CrossRefGoogle Scholar
  35. 35.
    Gegner, J.A. and Dahlquist, F.W. (1991) Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA, Proc. Natl. Acad. Sci. USA 88, 750–754.CrossRefGoogle Scholar
  36. 36.
    Schuster, S.C., Swanson, R.V., Alex, L.A., Bourret, R.B., and Simon, M.I. (1993) Assembly and function of a quaternary signal transduction complex by surface plasmon resonance, Nature 365, 343–347.CrossRefGoogle Scholar
  37. 37.
    Welch, M., Oosawa, K., Aizawa, S.-I., and Eisenbach, M. (1993) Phosphorylation-dependent binding of a signal molecule to the flagellar switch, Proc. Natl. Acad. Sci. USA 90, 8787–8791.CrossRefGoogle Scholar
  38. 38.
    Barak, R. and Eisenbach, M. (1992) Correlation between phosphorylation of the Chemotaxis protein CheY and its activity at the flagellar motor, Biochemistry 31, 1822–1826.Google Scholar
  39. 39.
    Springer, W.R. and Koshland Jr., D.E. (1977) Identification of a protein methyltransferase as the CheR gene product in the bacterial sensing system, Proc. Natl. Acad. Sci. USA 74, 533–537.CrossRefGoogle Scholar
  40. 40.
    Wu, J., Li, J., Long, D.G., and Weis, R.M. (1996) The receptor binding site for the methyltransferase of bacterial Chemotaxis is distinct from the sites of methylation, Biochemistry 35, 4984–4993.CrossRefGoogle Scholar
  41. 41.
    Yonekawa, H., Hayashi, H., and Parkinson, J.S. (1983) Requirement of the cheB function for sensory adaptation in Escherichia coli, J. Bacteriol. 156, 1228–1235.Google Scholar
  42. 42.
    Adler, J., Hazelbauer, G.L., and Dahl, M.M. (1973) Chemotaxis towards sugars in Escherichia coli, J. Bacteriol. 115, 824–847.Google Scholar
  43. 43.
    Jasuja, R., Yu-Lin, Trentham, D.R., and Khan, S. (1999) Response tuning in bacterial Chemotaxis, Proc. Natl. Acad. Sci. USA 96, 11346–11351.CrossRefGoogle Scholar
  44. 44.
    Kim, C, Jackson, M., Lux, R., and Khan, S. (2001) Determinants of chemotactic signal amplification in Escherichia coli, J. Mol. Biol. 307, 119–135.CrossRefGoogle Scholar
  45. 45.
    Mesibov, R. and Adler, J. (1972) Chemotaxis toward amino acids in Escherichia coli, J. Bacteriol. 112, 315-326.Google Scholar
  46. 46.
    Mesibov, R., Ordal, G.W., and Adler, J. (1973) The range of attractant concentrations for bacterial Chemotaxis and the threshold and size over this range, J. Gen. Physiol. 62, 203–223.CrossRefGoogle Scholar
  47. 47.
    Segall, J.E., Block, S.M., and Berg, H.C. (1986) Temporal comparisons in bacterial Chemotaxis,. Proc. Natl. Acad. Sci. USA 83.Google Scholar
  48. 48.
    Boyd, A., Kendall, K., and Simon, M.I. (1983) Structure of the serine chemoreceptor in Escherichia coli, Nature 301, 623–626.Google Scholar
  49. 49.
    Falke, J.J. and Koshland, D.E., Jr. (1987) Global flexibility in a sensory receptor: a site-directed crosslinking approach, Science 237, 1596–1600.CrossRefGoogle Scholar
  50. 50.
    Kim, K.K., Yokota, H., and Kim, S.H. (1999) Four-helical bundle structure of the cytoplasmic domain of a serine Chemotaxis receptor, Nature 400, 787–792.CrossRefGoogle Scholar
  51. 51.
    Milburn, M.V., Prive, G.G., Milligan, D.L., Scott, W.G., Yeh, J., Jancarik, J., Koshland, D.E., Jr., and Kim, S.-H. (1991) Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand, Science 254, 1352–1347.CrossRefGoogle Scholar
  52. 52.
    Milligan, D.L. and Koshland, D.E., Jr. (1988) Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial Chemotaxis,. J. Biol. Chem. 263. Google Scholar
  53. 53.
    Yeh, J.I., Biemann, H.-P., Pandit, J., Koshland, D.E., and Kim, S.-H. (1993) The three-dimensional structure of the ligand-binding domain of a wild-type Chemotaxis receptor, J. Biol. Chem. 268, 9787–9792.Google Scholar
  54. 54.
    Ames, P., Studdert, CA., Reiser, R.H., and Parkinson, J.S. (2002) Collaborative signaling by mixed chemoreceptor teams in Escherichia coli, Proc. Natl. Acad. Sci. USA 99, 7060–7065.CrossRefGoogle Scholar
  55. 55.
    Maddock, J.R. and Shapiro, L. (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell, Science 259, 1717–1723.CrossRefGoogle Scholar
  56. 56.
    Alley, M.R.K. (2001) The highly conserved domain of the Caulobacter McpA chemoreceptor is required for its polar localization, Mol. Microbiol. 40, 1335–1343.CrossRefGoogle Scholar
  57. 57.
    Gestwicki, J.E., Lamanna, A.C., Harshey, R.M., McCarter, L.L., Kiessling, L.L., and Adler, J. (2000) Evolutionary conservation of methyl-accepting Chemotaxis protein location in Bacteria and Archaea, J. Bacteriol. 182, 6499–6502.CrossRefGoogle Scholar
  58. 58.
    Harrison, D., Skidmore, J., Armitage, J., and Maddock, J. (1999) Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides, Mol. Microbiol. 31, 885–892.CrossRefGoogle Scholar
  59. 59.
    Kirby, J.R., Niewold, T.B., Maloy, S., and Ordal, G.W. (2000) CheB is required for behavioral responses to negative stimuli during Chemotaxis in Bacillus subtilis, Mol. Microbiol. 35, 44–57.CrossRefGoogle Scholar
  60. 60.
    Bray, D., Levin, M.D., and Morton-Firth, C.J. (1998) Receptor clustering as a cellular mechanism to control sensitivity, Nature 393, 85–88.CrossRefGoogle Scholar
  61. 61.
    Duke, T.A.J, and Bray, D. (1999) Heightened sensitivity of a lattice of membrane receptors, Proc. Natl. Acad. Sci. USA 96, 10104–10108.CrossRefGoogle Scholar
  62. 62.
    Shi, Y. and Duke, T. (1998) Cooperative model of bacterial sensing, Phys. Rev. E 58, 6399–6406.CrossRefGoogle Scholar
  63. 63.
    Shi, Y. (2001) Effects of thermal flucuation and the receptor-receptor interaction in bacterial chemotactic signaling and adaptation,. Phys. Rev. E 64, 1910.Google Scholar
  64. 64.
    Shimizu, T.S., Le Novére, N., Levin, MD., Beavil, A.J., Sutton, B.J., and Bray, D. (2000) Molecular model of a lattice of signaling proteins involved in bacterial Chemotaxis, Nature Cell Biol 2, 792–796.CrossRefGoogle Scholar
  65. 65.
    Grebe, T.W. and Stock, J. (1998) Bacterial Chemotaxis: the five sensors of a bacterium,. Curr. Biol. 8, R154–R157.CrossRefGoogle Scholar
  66. 66.
    Gestwicki, J.E., Strong, L.E., Borchardt, S.L., Cairo, C.W., Schnoes, A.M., and Kiessling, L.L. (2001) Designed potent multivalent chemoattractants for Escherichia coli, Bioorg. Med. Chem. 9, 2387–2393.CrossRefGoogle Scholar
  67. 67.
    Gestwicki, J.E., Strong, L.E., and Kiessling, L.L. (2000) Tuning chemotactic responses using synthetic multivalent ligands, Chem. Biol. 7, 583–591.CrossRefGoogle Scholar
  68. 68.
    Gestwicki, J.E. and Kiessling, L.L. (2002) Inter-receptor communication through arrays of bacterial chemoreceptors, Nature 415, 81–84.CrossRefGoogle Scholar
  69. 69.
    Alam, M. and Hazelbauer, G.L. (1991) Structural features of methyl-accepting taxis proteins conserved between Archaebacteria and Eubacteria revealed by antigenic cross-reaction, J. Bacteriol. 173, 5837–5842.Google Scholar
  70. 70.
    Lamanna, A.C., Gestwicki, J.E., Strong, L.E., Borchardt, S.L., Owen, R.M., and Kiessling, L.L. (2002) Conserved amplification of chemotactic responses through chemoreceptor interactions,. J. Bacteriol. 184, 4981-4987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. L. Kiessling
    • 1
  • A. C. Lamanna
    • 2
  1. 1.Departments of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations