Equivariant Motivic Phenomena

  • Victor Snaith
Conference paper
Part of the NATO Science Series book series (NAII, volume 131)


During the period September-December 2002 a research programme entitled “New Contexts for Stable Homotopy Theory” was staged at the Isaac Newton Institute for Mathematical Research. At the workshop on motivic and algebro-geometric homotopy theory I gave two lectures about Galois equivariant motivic phenomena in arithmetic. This article is a slight elaboration of those lectures in the light of comments from the other participants.


Galois Group Galois Extension Abelian Extension Finite Abelian Group Cochain Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beilinson A.A. (1990) Polylogarithms and cyclotomic elements; preprint.Google Scholar
  2. [2]
    Benois D. and Nguyen Quang Do T. (2002) Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien; Ann. Scient. Éc. Norm. Sup. 4e série t.35 641–672.zbMATHGoogle Scholar
  3. [3]
    Bloch S. (1994) An elementary presentation for K-groups and motivic cohomology; Motives Proc. Symp. Pure Math. vol 55 Part I 239–244.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Bloch S. and Kato K. (1990) L-functions and Tamagawa numbers of motives; Grothendieck Festschrift vol. 1 Progress in Math. #86, Birkhäuser (1990) 333–400.MathSciNetGoogle Scholar
  5. [5]
    Brumer A. (1967) On the units of algebraic number fields; Mathematika 14 (1967) 121–124.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Buhler J., Crandall R., Ernwall R. and Metsänkylä T. (1993): Irregular primes and cyclotomic invariants up to four million; Math. Comp. 61 (1993) 151–153.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Buhler J., Crandall R., Ernwall R., Shokrollahi A. and Metsänkylä T. (2001) Irregular primes and cyclotomic invariants up to twelve million; J. Symb. Comp. 31 (2001) 89–96.zbMATHCrossRefGoogle Scholar
  8. [8]
    Buhler J. (November 2002) Private communication.Google Scholar
  9. [9]
    Burgos J.I. (2002) The regulators of Beilinson and Borel; C.R.M. Monograph #15, Amer. Math.Soc.Google Scholar
  10. [10]
    Burns D. and Flach M. (1996): Motivic L-functions and Galois module structure; Math. Annalen 305 65–102.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Burns D. and Greither C. (2003) On the equivariant Tamagawa number conjecture for Tate motives; to appear in Inventiones Math..Google Scholar
  12. [12]
    Burns D. and Greither C. (2003): Equivariant Weiestrass preparation and values of L-functions at negative integers; to appear in Documenta Math..Google Scholar
  13. [13]
    Chinburg T., Kolster M., Pappas G. and Snaith V.P. (1995) Galois structure of K-groups of rings of integers; C.R. Acad. Sci. Paris t.320, Séries I 1435–1440.MathSciNetGoogle Scholar
  14. [14]
    Chinburg T., Pappas G., Kolster M. and Snaith V.P. (1997) Quaternionic exercises in K-theory Galois module structure; Proc. Great Lakes K-theory Conf., Fields Institute Communications Series #16 (A.M.Soc. Publications) 1–29.Google Scholar
  15. [15]
    Chinburg T., Kolster M., Pappas G. and Snaith V.P. (1998) Galois module structure of K-groups of rings of integers; K-Theory 14 (1998) (4), 319–369.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Chinburg T., Kolster M. and Snaith V. (1999) Quaternionic exercises in K-theory Galois module structure II; Algebraic K-theory and its Applications (eds. H. Bass, A.O. Kuku and C. Pedrini); Proc. Symp. I.C.T.P. Trieste World Scientific Press 337–369.Google Scholar
  17. [17]
    Chinburg T., Kolster M. and Snaith V. (2000) Comparison of K-theory Galois module structure invariants; Can.J.Math. (1) 52 47–91.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Coates J.H. and Sinnott W. (1974) An analogue of Stickelberger’s theorem for the higher K-groups; Inventiones Math. 24 (1974) 149–161.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Coates J.H. and Sinnott W. (1974) On p-adic L-functions over real quadratic fields; Inventiones Math. 25 253–279.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Cornacchia P. and Greither C. (1998) Fittings ideals of class-groups of real fields with prime power conductor; J. Number Theory (2) 73 459–471.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Curtis C.W. and Reiner I. (1981, 1987) Methods of Representation Theory vols. I & II, Wiley.Google Scholar
  22. [22]
    Dwyer W.G. and Friedlander E.M. (1985) Algebraic and étale K-theory; Trans. A.M.Soc. 292 (1) 247–280.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Dwyer W., Friedlander E.M., Snaith V.P. and Thomason R.W. (1982) Algebraic K-theory eventually surjects onto topological K-theory; Inventiones Math. 66 481–491.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Deligne P. and Ribet K. (1980): Values of abelian L-functions at negative integers over totally real fields; Invent. Math. 59 227–286.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Eisenbud D. (1995) Commutative Algebra with a view toward algebraic geometry; Grad. Texts in Math. #150 Springer-Verlag.Google Scholar
  26. [26]
    Esnault H. and Viehweg E. (1988) Deligne-Beilinson cohomology; Beilinson’s conjectures on Special Values of L-functions (eds. M. Rapoport, N. Schappacher and P. Schneider) Perspectives in Math. Academic Press pp.43–91.Google Scholar
  27. [27]
    Fontaine J-M. and Perrin-Riou B. (1994) Cohomologie Galoisienne et valeurs de fonctions L; Motives Proc. Symp. Pure Math. vol 55 Part I 599–706.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Grayson D. (1976) Higher algebraic K-theory II (after D.G. Quillen); Algebraic K-theory 217–240, Lecture Notes in Math. #551, Springer Verlag.Google Scholar
  29. [29]
    Greither C. (1992) Class groups of abelian fields and the Main Conjecture; Ann. Inst. Fourier 42 449–499.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Gross B.H. (1981) On the values of Artin L-functions; unpublished preprint.Google Scholar
  31. [31]
    Huber A. and Wildeshaus J. (1998) Classical polylogarithms according to Beilinson and Deligne; Documenta Math. J. DMV 3 27–133.MathSciNetzbMATHGoogle Scholar
  32. [32]
    Jannsen U. (1994) Motivic sheaves and nitrations on Chow groups; Motives Proc. Symp. Pure Math. vol 55 Part I 245–302.MathSciNetCrossRefGoogle Scholar
  33. [33]
    Kato K. (1993) Lectures on the approach to Hasse-Weil L-functions via B dR; Lecture Notes in Math. #1553, Springer Verlag 50–163.Google Scholar
  34. [34]
    Katz N. (1994) A review of l-adic cohomology; Motives Proc. Symp. Pure Math. vol 55 Part I 21–30.CrossRefGoogle Scholar
  35. [35]
    Kleiman S. (1972) Motives; Algebraic Geometry, Oslo 1970 (ed. F. Oort) Walters-Noordhoff, Groningen pp.53–82.Google Scholar
  36. [36]
    Knudsen F. and Mumford D. (1976) The projectivity of the moduli space of stable curves I: Preliminaries on ‘det’ and ‘Div’; Math. Scand. 39 19–55.MathSciNetzbMATHGoogle Scholar
  37. [37]
    Kolster M., Nguyen Quang Do T. and Fleckinger V. (1996) Twisted S-units, p-adic class number formulas and the Lichtenbaum conjectures; Duke J. Math. 84 679–717 (erratum Duke J. Math. 90 (1997) 641-643 plus further corrigenda in [2] and [38]).zbMATHCrossRefGoogle Scholar
  38. [38]
    Kolster M., Nguyen Quang Do T. (2000) Universal distribution lattices for abelian number fields; McMaster University preprint.Google Scholar
  39. [39]
    Kummer E.E. (1975) Collected Papers vol. I (ed. A. Weil); Springer Verlag.Google Scholar
  40. [40]
    Kurihara M. (1992) Some remarks about cyclotomic fields and K-groups of Z; Comp. Math. 81 223–236.MathSciNetzbMATHGoogle Scholar
  41. [41]
    Kurihara M. (2003) Iwasawa theory and Fitting ideals; to appear J. Reine. Angew. Math..Google Scholar
  42. [42]
    Lang S. (1984) Algebra; 2nd ed. Addison-Wesley.Google Scholar
  43. [43]
    Lee R. and Szczarba R.H. (1978) On the torsion in K 4(Z) and K 5(Z); Duke J. Math. (1) 45 (1978) 101–130 (with an addendum by C. Soulé 131-132).MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    Levine M. (1992) Relative Milnor K-theory; K-theory (2) 6 113–175 (correction: K-theory (5) 9 (1995) 503-505).zbMATHCrossRefGoogle Scholar
  45. [45]
    Lichtenbaum S. (1973) Values of zeta functions, étale cohomology and algebraic K-theory; Algebraic K-theory II Lecture Notes in Maths. #342, Springer Verlag 489–501.Google Scholar
  46. [46]
    MacLane S. (1971) Categories for the Working Mathematician; Graduate Texts in Mathematics #5, Springer Verlag.Google Scholar
  47. [47]
    Martinet J. (1977) Character theory and Artin L-functions; London Math. Soc. 1975 Durham Symposium Algebraic Number Fields (ed. A. Fröhlich) Academic Press 1–87.Google Scholar
  48. [48]
    Mazur B. and Wiles A. (1984) Class fields of abelian extensions of Q; Inventiones Math. 76 179–330.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    Nguyen Quang Do T. (2002) Quelques applications de la Conjecture Principale Equivariante; (handwritten notes for Journées Arithmétiques lecture in Lens; June 2002).Google Scholar
  50. [50]
    Neukirch J. (1988) The Beilinson conjectures for algebraic number fields; Perspectives in Math. 4 Beilinson’s conjectures on special values of L-functions (eds. R. Rapoport, P. Schneider and N. Schappacher) Academic Press 193–247.Google Scholar
  51. [51]
    Northcott D.G. (1976) Finite free resolutions; Cambridge University Press.Google Scholar
  52. [52]
    Patterson S.J. (1988) An introduction to the theory of the Riemann Zeta-Function; Cambridge Studies in Advanced Mathematics # 14.Google Scholar
  53. [53]
    Positelski L. (2002) Galois cohomology of certain field extensions and the divisible case of the Milnor-Kato conjecture; preprint ( Scholar
  54. [54]
    Queyrut J. (1982) S-groupes des classes d’un ordre arithmétiques; J.Alg. 76 234–260.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    Quillen D.G. (1973) Higher Algebraic K-theory I; Algebraic K-theory I 85–147, Lecture Notes in Math. # 341, Springer-Verlag.Google Scholar
  56. [56]
    Rognes J. (2000) K 4(Z) is the trivial group; Topology (2) 39 267–281.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    Scholl A.J. (1994) Classical motives; Motives Proc. Symp. Pure Math. vol 55 Part I 163–187.MathSciNetCrossRefGoogle Scholar
  58. [58]
    Serre J-P. (1977) Linear Representations of Finite Groups; Grad. Texts in Math. # 42 Springer-Verlag.Google Scholar
  59. [59]
    Siegel C. (1970) Uber die Fouriersche Koeffizienten von Modulformen; Gott. Nach. 3 1–56.Google Scholar
  60. [60]
    Snaith V.P. (1994) Galois Module Structure; Fields Institute Monographs # 2 A.M.Soc.Google Scholar
  61. [61]
    Snaith V.P. (2002) Algebraic K-groups as Galois Modules; Birkhäuser Progress in Mathematics series #206.Google Scholar
  62. [62]
    Snaith V.P. (2002) Relative K 0, annihilators, Fitting ideals and the Stickelberger phenomena; University of Southampton preprint 368 ( 2003).Google Scholar
  63. [63]
    Snaith V.P. (2002) Stark’s conjecture and anew Stickelberger phenomena; University of Southampton preprint.Google Scholar
  64. [64]
    Snaith V.P. (November 2002) Remarks concerning Vandiver’s conjecture; Newton Institute lecture and preprint.Google Scholar
  65. [65]
    Soulé C. (1987) Éléments cyclotomiques en K-théorie; Astérisque 147/8 225–257.Google Scholar
  66. [66]
    Soulé C. (1999) Perfect forms and the Vandiver conjecture; J. Reine Angew. Math. 517 209–221.MathSciNetzbMATHGoogle Scholar
  67. [67]
    Stark H. (1971, 1975, 1976, 1980) L-functions at s = 1, I, II, III, IV: Adv. in Math. 7 301–343; 17 60-92; 22 64-84; 35 197-235.zbMATHCrossRefGoogle Scholar
  68. [68]
    Stickelberger L. (1890) Über eine Verallgemeinerung der Kreistheilung; Math. Annalen 37 321–367.MathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    Swan R.G. (1968) Algebraic K-theory; Lecture Notes in Math. #76 Springer Verlag.Google Scholar
  70. [70]
    Tate J.T. (1984) Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0; Progress in Mathematics # 47 Birkhauser.Google Scholar
  71. [71]
    Tsuji T. (1999) Semi-local units modulo cyclotomic units; J. Number Theory 78 1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    Vandiver H.S. (1934) Fermat’s Last Theorem and the second factor in the cyclotomic class number; Bull. A.M.Soc. 40 118–126.MathSciNetCrossRefGoogle Scholar
  73. [73]
    Vandiver H.S. (1946, 1953) Fermat’s Last Theorem: Its history and the nature of known results concerning it; Amer. Math. Monthly 53 555–578; 60 164-167.MathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    Washington L. (2nd Edition, 1997) Introduction to Cyclotomic Fields; Springer-Verlag Grad. Texts in Math. # 83.Google Scholar
  75. [75]
    Wiles A. (1990) The Iwasawa conjecture for totally real fields; Annals of Math. 131 493–540.MathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    Wiles A. (1995) Modular elliptic curves and Fermat’s Last Theorem; Annals of Math. (2) 142 #3 443–551.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Victor Snaith
    • 1
  1. 1.University of SouthamptonHantsEngland

Personalised recommendations