Skip to main content

(PRE-)Sheaves of Ring Spectra Over the Moduli Stack of Formal Group Laws

  • Conference paper
Axiomatic, Enriched and Motivic Homotopy Theory

Part of the book series: NATO Science Series ((NAII,volume 131))

Abstract

In the first part of this article, I will state a realization problem for diagrams of structured ring spectra, and in the second, I will discuss the moduli space which parametrizes the problem. While some of what I say is quite general, the ring spectra I have in mind will arise from the chromatic point of view, which uses the geometry of formal groups to organize stable homotopy theory. Thus, a subsidiary aim here is to reemphasize this connection between algebraic geometry and homotopy theory.

This note is an expanded version of two talks given during the NATO Advanced Study Institute “Axiomatic and Enriched Homotopy Theory” held at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 9–20 September 2002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. F., Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill., 1974.

    Google Scholar 

  2. Ando, Matthew, “Power operations in elliptic cohomology and representations of loop groups”, Trans. Amer. Math. Soc., 352 (2000) No. 12, 5619–5666.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ando, M. and Hopkins, M. and Strickland, N., “The sigma orientation is an H map”, manuscript, UIUC, 2002.

    Google Scholar 

  4. Artin, M., “Versal deformations and algebraic stacks”, Invent. Math., 27 (1974), 165–189.

    Article  MathSciNet  MATH  Google Scholar 

  5. Atiyah, M. F., “Vector bundles and the Kiinneth formula”, Topology, 1 (1962), 245–248.

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, Andrew, “A structures on some spectra related to Morava K-theories”, Quart. J. Math. Oxford Ser. (2), 42 (1991), No. 168, 403–419.

    Article  MathSciNet  MATH  Google Scholar 

  7. Baker, Andrew and Jeanneret, Alain, “Brave new Hopf algebroids and extensions of MU-algebras”, Homology Homotopy Appl. 4 (2002), No. 1, 163–173 (electronic)

    MathSciNet  Google Scholar 

  8. Blanc, David, and Dwyer, William and Goerss, Paul, “The realization space of a Π-algebra, manuscript, to appear in Topology.

    Google Scholar 

  9. Carlsson, Gunnar, “Problem session”, Equivariant stable homotopy theory and related areas (Stanford, CA, 2000), Homology Homotopy Appl., 3 (2001) No. 2, vii–xv (electronic).

    Google Scholar 

  10. Deligne, P. and Mumford, D. J, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36, (1969), 75–109

    Article  MathSciNet  MATH  Google Scholar 

  11. Demazure, Michel and Gabriel, Pierre, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Avec un appendice Corps de classes local par Michiel Hazewinkel, Masson & Cie, Éditeur, Paris, 1970.

    Google Scholar 

  12. Devinatz, Ethan S., “Morava’s change of rings theorem”, The Čech centennial (Boston, MA, 1993), Contemp. Math. 181, 83–118, Amer. Math. Soc., Providence, RI, 1985.

    Google Scholar 

  13. Dwyer, W. G. and Kan, D. M., “An obstruction theory for diagrams of simplicial sets”, Nederl. Akad. Wetensch. Indag. Math., 46 (1984) No. 2, 139–146.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dwyer, W. G. and Kan, D. M., “A classification theorem for diagrams of simplicial sets”, Topology, 23 (1984), No. 2, 139–155.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dwyer, W. G. and Kan, D. M. and Stover, C. R., “The bigraded homotopy groups πi,j X of a pointed simplicial space X”, J. Pure Appl. Algebra, 103 (1995) No. 2, 167–188.

    Article  MathSciNet  MATH  Google Scholar 

  16. Elmendorff, A.D., Kriz, I., Mandell, M.A., May, J.P., “Rings, modules, and algebras in stable homotopy theory”, Mathematical Surveys and Monographs 47, AMS, Providence, RI, 1996.

    Google Scholar 

  17. Fantechi, Barbara, “Stacks for everybody”, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, 249–359, Birkhäuser, Basel, 2001.

    Google Scholar 

  18. Goerss, Paul G. and Hopkins, Michael J., “André-Quillen (co)-homology for simplicial algebras over simplicial operads, Une dégustation topologique: homotopy theory in the Swiss Alps (Arolla, 1999), Contemp. Math. 265, 41–85, Amer. Math. Soc., Providence, RI 2000.

    Chapter  Google Scholar 

  19. Goerss, Paul G. and Hopkins, Michael J., “Moduli spaces of commutative ring spectra”, preprint, Northwestern Univerity, 2003.

    Google Scholar 

  20. Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.

    Google Scholar 

  21. Hopkins, M.J., “Algebraic topology and modular forms”, manuscript MIT, 2003. Submitted to the Proceedings of the ICM, Beijing, 2002.

    Google Scholar 

  22. Hopkins, M. J. and Gross, B. H., “The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory”, Bull. Amer. Math. Soc. (N.S.), 30 (1994) No. 1, 76–86.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hollander, S. “A Homotopy Theory for Stacks”, Thesis, MIT 2001.

    Google Scholar 

  24. Hovey, Mark, “Morita theory for Hopf algebroids and presheaves of groupoids”, Amer. J. Math., 124 (2002) No. 6, 1289–1318.

    Article  MathSciNet  MATH  Google Scholar 

  25. Illusie, Luc, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  26. Jardine, J. F., “Stable homotopy theory of simplicial presheaves”, Canad. J. Math., 39 (1987) No. 3, 733–747.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jardine, J. F., “Presheaves of symmetric spectra”, J. Pure Appl. Algebra, 150 (2000) No. 2, 137–154.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jardine, J. F., “Stacks and the homotopy theory of simplicial sheaves”, Equivariant stable homotopy theory and related areas (Stanford, CA, 2000), Homology Homotopy Appl., 3 (2001) No. 2, 361–384.

    MathSciNet  MATH  Google Scholar 

  29. Laumon, Gérard and Moret-Bailly, Laurent, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 39, Springer-Verlag, Berlin 2000.

    MATH  Google Scholar 

  30. Lazarev, A., “Towers of MU-algebras and the generalized Hopkins-Miller theorem”, preprint 2002.

    Google Scholar 

  31. Lubin, Jonathan and Tate, John, “Formal moduli for one-parameter formal Lie groups”, Bull. Soc. Math. France, 94 (1966), 49–59.

    MathSciNet  MATH  Google Scholar 

  32. Miller, Haynes, “A new take on LEFT”, notes of a talk given at the AMS Annual Meeting, Baltimore 2003. Available at http://www-math.mit.edu/~hrm/papers/~hrm/papers

  33. Milne, James S., Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980.

    MATH  Google Scholar 

  34. Quillen, Daniel, “On the (co-) homology of commutative rings”, Applications of Categorical Algebra, Proc. Sympos. Pure Math., Vol. XVII, New York, 1968, 65–87, Amer. Math. Soc., Providence, R.I., 1970.

    Google Scholar 

  35. Rezk, Charles, “Notes on the Hopkins-Miller theorem”, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), Contemp. Math. 220, 313–366, Amer. Math. Soc., Providence, RI, 1998.

    Chapter  Google Scholar 

  36. Rezk, Charles, “Supplementary Notes for Math 512, Version 0.17”, available at http://www.math.uiuc.edu/~rezk//~rezk/.

  37. Robinson, Alan, “Obstruction theory and the strict associativity of Morava K-theories”, Advances in homotopy theory (Cortona, 1988), London Math. Soc. Lecture Note Ser. 139, 143–152, Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  38. Robinson, Alan, “Gamma homology, Lie representations and E multiplications”, Invent. Math. 152 (2003), No.2, 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  39. Robinson, Alan and Whitehouse, Sarah, “Operads and Γ-homology of commut-ative rings”, Math. Proc. Cambridge Philos. Soc., 132 (2002) No. 2, 197–234.

    Article  MathSciNet  MATH  Google Scholar 

  40. Strickland, Neil P., “Finite subgroups of formal groups”, J. Pure Appl. Algebra, 121 (1997) No. 2, 161–208.

    Article  MathSciNet  MATH  Google Scholar 

  41. Strickland, Neil P., “Formal schemes and formal groups”, Homotopy invariant algebraic structures (Baltimore, MD, 1998), Cont. Math 239, 263–352, Amer. Math. Soc., Providence, RI, 1999.

    Chapter  Google Scholar 

  42. Strickland, N. P., “Products on MU-modules”, Trans. Amer. Math. Soc., 351 (1999) No. 7, 2569–2606.

    Article  MathSciNet  MATH  Google Scholar 

  43. Vistoli, Angelo, “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. Math., 97 (1989) No. 3, 613–670.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Goerss, P.G. (2004). (PRE-)Sheaves of Ring Spectra Over the Moduli Stack of Formal Group Laws. In: Greenlees, J.P.C. (eds) Axiomatic, Enriched and Motivic Homotopy Theory. NATO Science Series, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0948-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0948-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1834-3

  • Online ISBN: 978-94-007-0948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics