Advertisement

Localizations

  • W. G. Dwyer
Part of the NATO Science Series book series (NAII, volume 131)

Abstract

The aim of this paper is to describe the concept of localization, as it usually comes up in topology, and give some examples of it. Many of the results we will describe are due to Bousfield.

Keywords

Chain Complex Good Localization Homotopy Group Loop Space Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Alonso Tarrío, A. Jeremias López, and J. Lipman, Studies in duality on Noetherian formal schemes and non-Noetherian ordinary schemes, Contemporary Mathematics, vol. 244, American Mathematical Society, Providence, RI, 1999.Google Scholar
  2. [2]
    B. Badzioch, Algebraic theories in homotopy theory, Ann. of Math. (2) 155 (2002), no. 3, 895–913.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. K. Bousfield, The simplicial homotopy theory of iterated loop spaces, unpublished.Google Scholar
  4. [4]
    A. K. Bousfield-, The localization of spaces with respect to homology, Topology 14 (1975), 133–150.Google Scholar
  5. [5]
    A. K. Bousfield ——, Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (1976/77), no. 2, 207–220.Google Scholar
  6. [6]
    A. K. Bousfield ——, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281.Google Scholar
  7. [7]
    A. K. Bousfield ——, K-localizations and K-equivalences of infinite loop spaces, Proc. London Math. Soc. (3) 44 (1982), no. 2, 291–311.Google Scholar
  8. [8]
    A. K. Bousfield ——, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873.Google Scholar
  9. [9]
    _A. K. Bousfield ——, Homotopical localizations of spaces, Amer. J. Math. 119 (1997), no. 6, 1321–1354.Google Scholar
  10. [10]
    A. K. Bousfield ——, The K-theory localizations and v1-periodic homotopy groups of H-spaces, Topology 38 (1999), no. 6, 1239–1264.Google Scholar
  11. [11]
    A. K. Bousfield ——, On K(n)-equivalences of spaces, Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 85–89.Google Scholar
  12. [12]
    A. K. Bousfield ——, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391–2426 (electronic).Google Scholar
  13. [13]
    A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Springer-Verlag, Berlin, 1972, Lecture Notes in Mathematics, Vol. 304.Google Scholar
  14. [14]
    C. Casacuberta, D. Scevenels, and J. H. Smith, Implications of large-cardinal principles in homotopical localization, preprint.Google Scholar
  15. [15]
    W. Chacholski, On the functors CW A and PA, Duke Math. J. 84 (1996), no. 3, 599–631.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    E. Dror-Farjoun, W. G. Dwyer, and D. M. Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977), no. 2, 242–254.MathSciNetzbMATHGoogle Scholar
  17. [17]
    E. Dror Farjoun, Homotopy and homology of diagrams of spaces, Algebraic topology (Seattle, Wash., 1985), Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 93–134.Google Scholar
  18. [18]
    E. Dror-Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996.Google Scholar
  19. [19]
    D. Dugger, S. Hollander, and D. C. Isaksen, Hypercovers and simplicial presheaves, preprint (2002) http://www.math.uiuc.edu/K-theory/0563/spre.dvi/K-theory/0563/spre.dvi.
  20. [20]
    W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J. Math. 124 (2002), no. 1, 199–220.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    D. M. Kan ——, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980), no. 3, 267–284.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]D. M. Kan ——, Function complexes for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 2, 139–147.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    P. G. Goerss and J. F. Jardine, Localization theories for simplicial presheaves, Canad. J. Math. 50 (1998), no. 5, 1048–1089.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    P. Goerss, H.-W. Henn, and M. Mahowald, The homotopy of L 2 V(1) for the prime 3, preprint (2002).Google Scholar
  26. [26]
    T. G. Goodwillie, Calculus III, preprint (2002).Google Scholar
  27. [27]
    T. G. Goodwillie ——, Calculus. II. Analytic functors, K-Theory 5 (1991/92), no. 4, 295–332.Google Scholar
  28. [28]
    J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438–453.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    J. P. May ——, Completions in algebra and topology, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 255–276.CrossRefGoogle Scholar
  30. [30]
    A. Grothendieck, Local cohomology, Springer-Verlag, Berlin, 1967, Course notes taken by R. Hartshorne, Harvard University, Fall, 1961. Lecture Notes in Mathematics, No. 41.zbMATHGoogle Scholar
  31. [31]
    P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003.Google Scholar
  32. [32]
    M. Hovey and N. P. Strickland, Morava K-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100.MathSciNetGoogle Scholar
  33. [33]
    J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. J. Kuhn, Morava K-theories and infinite loop spaces, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 243–257.Google Scholar
  35. [35]
    M. Mahowald, D. Ravenel, and P. Shick, The triple loop space approach to the telescope conjecture, Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 217–284.CrossRefGoogle Scholar
  36. [36]
    M. Mahowald and R. D. Thompson, The K-theory localization of an unstable sphere, Topology 31 (1992), no. 1, 133–141.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    H. Miller, Finite localizations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383–389, Papers in honor of José Adem (Spanish).MathSciNetzbMATHGoogle Scholar
  38. [38]
    F. Morel and V. Voevodsky, A1-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001).Google Scholar
  39. [39]
    D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    D. C. Ravenel ——, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992, Appendix C by Jeff Smith.Google Scholar
  41. [41]
    G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    K. Shimomura and X. Wang, The homotopy groups π* L 2(S 0) at the prime 3, preprint.Google Scholar
  43. [43]
    K. Shimomura and A. Yabe, The homotopy groups π*(L 2 S 0), Topology 34 (1995), no. 2, 261–289.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154.MathSciNetzbMATHGoogle Scholar
  45. [45]
    D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • W. G. Dwyer
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations