Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 173))

  • 765 Accesses

Abstract

Regulation of the first spindle formation in brown algal zygotes was described. It is well known that there are three types of sexual reproduction in brown algae; isogamy, anisogamy and oogamy. Paternal inheritance of centrioles can be observed in all these cases, similar to animal fertilization. In isogamy and anisogamy, female centrioles (= flagellar basal bodies) selectively disappear and male centrioles remain after fertilization. In a typical oogamy (e.g. fucoid members), liberated egg does not have centrioles, and sperm centrioles are introduced in zygote. Participation of sperm centrioles to the spindle formation in zygotes was also described using Fucus distichus as a model system. Sperm centrioles function as a part of centrosome, namely microtubule organizing center, in zygote. Therefore, they have a crucial role in the spindle formation. Observations on the spindle formation in polygyny and karyogamy-blocked zygotes strongly suggest that egg nucleus can form a mitotic spindle by itself without centrosome, even though the resulting spindles are of abnormal shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  • Balczon. R., 1996. The centrosome in animal cells and its functional homologs in plant and yeast cells. Int. Rev. Cytol. 169: 25–82.

    Article  PubMed  CAS  Google Scholar 

  • Berkaloff, C. & B. Rousseau, 1979. Ultrastructure of male gametogenesis in Fucus serratus (Phaeophyceae). J. Phycol. 15: 163–173.

    Article  Google Scholar 

  • Bisgrove, S. R., C. Nagasato, T. Motomura & D. L. Kropf, 1997. Immunolocalization of centrin during fertilization and the first cell cycle in Fucus distichusand Pelvetia compressa (Fucales, Phaeophyceae). J. Phycol. 33: 823–829.

    Article  Google Scholar 

  • Brawley, S. H. & R. S. Quatrano, 1979. Effects of microtubule inhibitors on pronuclear migration and embryogenesis in Fucus distichus (Phaeophyta). J. Phycol. 15: 266–272.

    Article  CAS  Google Scholar 

  • Compton, D. A., 1998. Focusing on spindle poles. J. Cell Sci. 111: 1477–1481.

    PubMed  CAS  Google Scholar 

  • Gaglio, T., M. A. Dionne & D. A. Compton, 1997. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 135: 399–414.

    Article  Google Scholar 

  • Heald, R., R. Tournebize, A. Habermann, E. Karsenti & A. Hyman, 1997. Spindle assembly in Xenopus egg extracts: Respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Holy, J. & G. Schatten, 1991. Spindle pole centrosomes of sea urchin embryos are partially composed of material recruited from maternal stores. Dev. Biol. 147: 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, H. C, M. J. Palacios, L. McNamara & D. W. Cleveland, 1992. γ-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Kato, K. H., S. Washitani-Nemoto, A. Hino & S. Nemoto, 1990. Ultrastructural studies on the behavior of centrioles during meiosis of starfish oocytes. Dev. Growth and Differ. 32: 41–49.

    Article  Google Scholar 

  • Katsaros, C., 1992. Immunofluorescence study of microtubule organization in some polarized cell types of selected brown algae. Bot. Acta 105: 400–406.

    Google Scholar 

  • Katsaros, C. & B. Galatis, 1985. Ultrastructural studies on thallus development in Dictyota dichotoma (Phaeophyta, Dictyotales). Br. Phycol. J. 20: 263–276.

    Article  Google Scholar 

  • Katsaros, C. & B. Galatis, 1988. Thallus development in Dictyopteris membranacea (Phaeophyta, Dictyotales). Br. Phycol. J. 23: 71–88.

    Article  Google Scholar 

  • Katsaros, C. & B. Galatis, 1990. Thallus development in Halopteris filicina (Phaeophyceae, Sphacelariales). Br. Phycol. J. 25: 63–74.

    Article  Google Scholar 

  • Katsaros, C. & B. Galatis, 1992. Immunofluorescence and electron microscope studies of microtubule organization during the cell cycle of Dictyota dichotoma (Phaeophyta, Dityotales). Protoplasma 169: 75–84.

    Article  Google Scholar 

  • Katsaros, C., B. Garatis & K. Mitrakos, 1983. Fine structural studies on the interphase and dividing apical cells of Sphacelaria tribuloides (Phaeophyta). J. Phycol. 19: 16–30.

    Article  Google Scholar 

  • Kimble, M. & R. Kuriyama, 1992. Functional components of microtubule-organizing centers. Int. Rev. Cytol. 136: 1–50.

    Article  PubMed  CAS  Google Scholar 

  • Kitayama, T., H. Kawai & T. Yoshida, 1992. Dominance of female gametophytes in field populations of Cutleria cylindrica (Cutleriales, Phaeophyceae) in the Tsugaru Strait, Japan. Phycologia 31:449–461.

    Article  Google Scholar 

  • La Claire, J. W., II, 1982. Light and electron microscopic studies of growth and reproduction in Cutleria (Phaeophyta). III. Nuclear division in the trichothallic meristem of C. cylindrica. Phycologia 21: 273–287.

    Article  Google Scholar 

  • La Claire, J. W. II & J. A. West, 1979. Light-and electronmicroscopic studies of growth and reproduction in Cutleria (Phaeophyta). II. Gametogenesis in the male plant of C. hancokii. Protoplasma 101: 247–267.

    Article  Google Scholar 

  • Lewis, R. J., B. Jiang, Y. M. Neushul & X. G. Fei, 1993. Haploid parthenogenetic sporophytes of Laminaria japonica (Phaeophyceae). J. Phycol. 29: 363–369.

    Article  Google Scholar 

  • Lloyd, C. W., 1991. The Cytoskeletal Basis of Plant Growth and Form. Academic Press, London: 330 pp.

    Google Scholar 

  • Markey, D. R. & R. T. Wilce, 1975. The ultrastructure of reproduction in the brown alga Pylaiella littoralis. I. Mitosis and cytokinesis in the plurilocular gametangia. Protoplasma 85: 219–241.

    Article  PubMed  CAS  Google Scholar 

  • Motomura, T., 1989. Ultrastructural study of sperm in Laminaria angustata (Laminariales, Phaeophyta), especially on the flagellar apparatus. Jpn. J. Phycol. 37: 105–116.

    Google Scholar 

  • Motomura, T., 1990. Ultrastructure of fertilization in Laminaria angustata (Phaeophyta, Laminariales) with emphasis on the behavior of centrioles, mitochondria and chloroplasts of the sperm. J. Phycol. 26: 80–89.

    Article  Google Scholar 

  • Motomura, T., 1991. Immunofluorescence microscopy of fertilization and parthenogenesis in Laminaria angustata (Phaeophyta). J. Phycol. 27: 248–257.

    Article  Google Scholar 

  • Motomura, T., 1992. Disappearance of centrioles derived from female gametes in zygotes of Colpomenia bullosa (Phaeophyceae). Jpn. J. Phycol. 40: 207–214.

    Google Scholar 

  • Motomura, T., 1994. Electron and immunofluorescence microscopy on the fertilization of Fucus distichus (Fucales, Phaeophyceae). Protoplasma 178: 97–110.

    Article  Google Scholar 

  • Motomura, T., 1995. Premature chromosome condensation of the karyogamy-blocked sperm pronucleus in the fertilization of Fucus distichus (Fucales, Phaeophyceae). J. Phycol. 31: 108–113.

    Article  Google Scholar 

  • Motomura, T. & Y. Sakai, 1985. Ultrastuctural studies on nuclear division in the sporophyte of Carpomitra cabrerae (Clemente) Kützing (Phaeophyta, Sporochnales). Jpn. J. Phycol. 33: 199–209.

    Google Scholar 

  • Motomura, T. & Y. Sakai, 1988. The occurrence of flagellated eggs in Laminaria angustata (Phaeophyta, Laminariales) J. Phycol. 24: 282–285.

    Google Scholar 

  • Nagasato, C., T. Motomura & T. Ichimura, 1998. Selective disappearance of maternal centrioles after fertilization in the anisogamous brown alga Cutleria cylindrica (Cutleriales, Phaeophyceae): paternal inheritance of centrioles is universal in the brown algae. Phycol. Res. 46: 191–198.

    Article  Google Scholar 

  • Nagasato, C., T. Motomura & T. Ichimura, 1999. Influence of centriole behavior on the first spindle formation in zygotes of the brown alga Fucus distichus (Fucales, Phaeophyceae). Dev. Biol. 208: 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara, H., 1984. Alternation of generations of some brown algae in unialgal and axenic culture. Sci. Pap. Inst. Algol. Res. Fac. Sci. Hokkaido Univ. 7: 77–194

    Google Scholar 

  • Navara, C. S., N. L. First & G. Schatten, 1994. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Dev. Biol. 162: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Neushul, M. & A. L. Dahl, 1972. Ultrastructural studies of brown algal nuclei. Am. J. Bot. 59: 401–410.

    Article  Google Scholar 

  • Oakley, B. R., C. E. Oakley, Y. Yoon & M. K. Jung, 1990. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61: 1289–1301.

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly, C. J., 1989. The evolutionary origin of the brown algae: information from studies of motile cell ultrastructure. In Green, J. C, B. S. C. Leadbeater & W. L. Diver (eds), The Chromophyte Algae. Problems and Perspectives. Oxford University Press, Oxford: 55–278.

    Google Scholar 

  • Rusig, A. M., H. Le Guyader & G. Ducreux, 1993. Microtubule organization in the apical cell of Sphacelaria (Phaeophyceae) and its related protoplast. Hydrobiologia 260/261: 167–172.

    Article  Google Scholar 

  • Rusig, A. M., H. Le Guyader & G. Ducreux, 1994. Dedifferentiation and microtubule reorganization in the apical cell protoplast of Sphacelaria (Phaeophyceae). Protoplasma 179: 83–94.

    Article  Google Scholar 

  • Schatten, G., 1994. Centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165: 299–335.

    Article  PubMed  CAS  Google Scholar 

  • Sluder, G. F., F. J. Miller, K. Lewis, E. D. Davidson & C. L. Rieder, 1989. Centrosome inheritance in starfish zygotes: Selective loss of the maternal centrosome after fertilization. Dev. Biol. 131: 567–579.

    Article  PubMed  CAS  Google Scholar 

  • Swope, R. E. & D. L. Kropf, 1993. Pronuclear positioning and migration during fertilization in Pelvetia. Dev. Biol. 157: 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Wheatley, D. N., 1982. The Centriole: A Central Enigma of Cell Biology. Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Wynne, M. J. & S. Loiseaux, 1976. Recent advances in life history studies of the Phaeophyta. Phycologia 15: 435–452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Motomura, T., Nagasato, C. (2004). The first spindle formation in brown algal zygotes. In: Ang, P.O. (eds) Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Developments in Hydrobiology, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0944-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0944-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3748-8

  • Online ISBN: 978-94-007-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics