Skip to main content

Cyanobacteria-dominated biofilms: a high quality food resource for intertidal grazers

  • Conference paper
Asian Pacific Phycology in the 21st Century: Prospects and Challenges

Part of the book series: Developments in Hydrobiology ((DIHY,volume 173))

Abstract

Hong Kong rocky shores are dominated by cyanobacterial biofilms composed of a diversity of species. Thirteen common species, belonging to seven genera, were isolated in pure culture in MN+ and MN— media under defined growth conditions from a semi-exposed shore in Hong Kong. The nutritional values (i.e., protein, carbohydrate and calorific value) of these 13 species were determined. All species showed high nutritional quality in terms of protein, carbohydrate and calorific value, however, overall nutritional value varied between the species. Species of Spirulina and Phormidium were most nutritious (highest nutritional values) whereas species of Calothrix and Lyngbya were the least nutritious. Microphagous molluscan grazer density and diversity were relatively high at the study site, despite the seemingly low biomass (as assessed by chlorophyll a concentration) of the biofilm. It is suggested that the high nutritional quality of cyanobacteria, together with their fast turnover rates can support high levels of secondary production (biomass of grazers). The high nutritional quality of cyanobacteria on tropical, cyanobacteria-dominated, rocky shores is therefore of great importance in the benthic food web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  • Ahlgren, G., I. B. Gustafsson & M. Boberg, 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28: 37–50.

    Article  CAS  Google Scholar 

  • Ahlgren, G., L. Lundstedt, M. Brett & C. Forsberg, 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12: 809–818.

    Article  CAS  Google Scholar 

  • Anderson, M. J., 1995. Variations in biofilms colonizing artificial surfaces: seasonal effects and effects of grazers. J. mar. biol. Ass. U.K. 75: 705–714.

    Article  Google Scholar 

  • Ben-Amotz, A., T. G. Tornabene & W. H. Thomas, 1985. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 72–81.

    Article  CAS  Google Scholar 

  • Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M., 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. exp. mar. Biol. Ecol. 145: 79–99.

    Article  CAS  Google Scholar 

  • Dawes, C. J., J. M. Lawrence, D. P. Cheney & A. C. Mathieson, 1974. Ecological studies of floridian Eucheuma (Rhodophyta, Gigartinales). III. Seasonal variation of carrageenan, total carbohydrate, protein and lipid. Bull. mar. Sci. 24: 286–299.

    CAS  Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  • Foster, M. S., 1964. Microscopic algal food of Littorina planaxis Philippi and Littorina scutulata Gould (Gastropoda: Prosobranchia). Veliger 7: 149–152.

    Google Scholar 

  • Hill, A. S. & S. J. Hawkins, 1991. Seasonal and spatial variation of epilithic microalgal distribution and abundance and its ingestion by Patella vulgata on a moderately exposed rocky shore. J. mar. biol. Ass. U.K. 71:403–423.

    Article  Google Scholar 

  • Hussain, M.I. & T. M. Khoja, 1993. Intertidal and subtidal bluegreen algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. Bot. mar. 36: 377–388.

    Article  Google Scholar 

  • James, C. M., S. Al-Hinty & A. E. Salman, 1989. Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 77: 337–357.

    Article  CAS  Google Scholar 

  • Jónasdóttir, S. H. & T. Kiørboe, 1996. Copepod recruitment and food composition: do diatoms affect hatching success? Mar. Biol. 125: 743–750.

    Article  Google Scholar 

  • Kaehler, S. & G. A. Williams, 1996. Distribution of algae on tropical rocky shores: spatial and temporal patterns of non-coralline encrusting algae in Hong Kong. Mar. Biol. 125: 177–187.

    Article  Google Scholar 

  • Kaehler, S. & R. Kennish, 1996. Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot. mar. 39: 11–17.

    Article  Google Scholar 

  • Kodiert, G., 1978. Protein determination by dye binding. In Hellebust, J. A. & J. S. Craigie (eds), Handbook of Phycological Methods. Physiological and Biochemical Methods. Cambridge University Press, Cambridge: 91–93.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplanktoncyanobacteria interactions. Nz. J mar. Freshwat. Res. 21: 483–490.

    Article  Google Scholar 

  • MacLulich, J. H., 1987. Variation in the density and variety of intertidal epilithic microflora. Mar. Ecol. Prog. Ser. 40: 285–293.

    Article  Google Scholar 

  • McQuaid, C. D., 1985. Seasonal variation in ash-free calorific value of nine intertidal macroalgae. Bot. mar. 28: 545–548.

    Google Scholar 

  • Nagarkar, S., 1996. The Ecology of Intertidal, Epilithic Biofilms with Special Reference to Cyanobacteria. Unpublished Ph.D. thesis. The University of Hong Kong, Hong Kong.

    Google Scholar 

  • Nagarkar, S., 1998a. New records of marine cyanobacteria from rocky shores of Hong Kong. Bot. mar. 41: 527–542.

    Article  Google Scholar 

  • Nagarkar, S., 1998b. New records of coccoid cyanobacteria from Hong Kong rocky shores. Asian mar. Biol. 15: 119–125.

    Google Scholar 

  • Nagarkar, S. & G. A. Williams, 1997. Comparative techniques to quantify cyanobacteria dominated epilithic biofilms on tropical rocky shores. Mar. Ecol. Prog. Ser. 154: 281–291.

    Article  Google Scholar 

  • Nagarkar, S. & G. A. Williams, 1999. Spatial and temporal variation of cyanobacteria-dominated epilithic communities on a tropical rocky shore in Hong Kong. Phycologia 38: 385–393.

    Article  Google Scholar 

  • Nicotri, M. E., 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.

    Article  Google Scholar 

  • Potts, M., 1980. Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73.

    Article  Google Scholar 

  • Quinn, G. P., 1988. Ecology of the intertidal pulmonate limpet Siphonaria diemenensis Quoy et Gaimard. I. Population dynamics and availability of food. J. exp. mar. Biol. Ecol. 117: 115–136.

    Article  Google Scholar 

  • Raffaelli, D., 1985. Functional feeding groups of some intertidal molluscs defined by gut content analysis. J. moll. Stud. 51: 233–239.

    Google Scholar 

  • Repka, S., 1998. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. II. Daphnia cucullata feeding on mixed diets. Freshwat. Biol. 38: 685–692.

    Article  Google Scholar 

  • Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman & R. Y. Stanier, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. gen. Microbiol. 111: 1–61.

    Article  Google Scholar 

  • Schmidt, K. & S. H. Jónasdóttir, 1997. Nutritional quality of two cyanobacteria: how rich is ‘poor’ food? Mar. Ecol. Prog. Ser. 151: 1–10.

    Article  Google Scholar 

  • Stewart, W. D. P., 1973. Nitrogen fixation. In Carr, N. G. & B. A. Whitton (eds), The Biology of Blue-green Algae. Botanical Monographs 9, Blackwell Scientific Publications, Oxford: 260–278.

    Google Scholar 

  • Subramanian, G., 1998. Marine cyanobacteria for feed, fine chemicals and pharmaceuticals. In Subramanian, G., B. D. Kaushik & G. S. Venkataraman (eds), Cyanobacterial Biotechnology. Science Publishers, Inc., U.S.A: 281–285.

    Google Scholar 

  • Sujatha, V. S. & B. D. Kaushik, 1998. Cellular characteristics of a marine Nostoc calcicola BDU 40302. In Subramanian, G., B. D. Kaushik & G. S. Venkataraman (eds), Cyanobacterial Biotechnology. Science Publishers, Inc., U.S.A: 91–97.

    Google Scholar 

  • Thacker, R. W., D. G. Nagle & V. J. Paul, 1997. Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar. Ecol. Prog. Ser. 147: 21–29.

    Article  CAS  Google Scholar 

  • Thajuddin, N. & G. Subramanian, 1992. Survey of cyanobacterial flora of the southern east coast of India. Bot. mar. 35: 305–314.

    Article  Google Scholar 

  • Thompson, P. A., P. J. Harrison & J. N. C. Whyte, 1990. Influence of irradiance on the fatty acid composition of phytoplankton. J. Phycol. 26: 278–288.

    Article  CAS  Google Scholar 

  • Thompson, R. C., B. J. Wilson, M. L. Tobin, A. S. Hill & S. J. Hawkins, 1996. Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. J. exp. mar. Biol. Ecol. 202: 73–84.

    Article  Google Scholar 

  • Umezaki, I., 1961. The Marine Blue-green Algae of Japan. In Memoirs of the College of Agriculture Kyoto University, Kyoto University, Kyoto, Japan 83: 1–149.

    Google Scholar 

  • Venkataraman, L. V, 1993. Spirulina in India. In Subramanian, G. (ed.), Proceedings of the National Seminar on Cyanobacterial Research — Indian Scene. NFMC, BARD, Tiruchirapalli, India: 92–116.

    Google Scholar 

  • Whitton, B. A. & M. Potts, 1982. Marine Littorals. In Carr, N. G. & B. A. Whitton (eds), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford: 515–542.

    Google Scholar 

  • Whyte, J. N. C., 1987. Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60: 231–241.

    Article  CAS  Google Scholar 

  • Williams, G. A., 1993. Seasonal variation in algal species richness and abundance in the presence of molluscan herbivores on a tropical rocky shore. J. exp. mar. Biol. Ecol. 167: 261–275.

    Article  Google Scholar 

  • Williams, G. A., 1994. Grazing by high-shore littorinids on a moderately exposed tropical rocky shore. In Morton, B. S. (ed.), Proceedings of the Third International Workshop on the Malacofauna of Hong Kong and Southern China. Hong Kong University Press, Hong Kong: 379–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nagarkar, S., Williams, G.A., Subramanian, G., Saha, S.K. (2004). Cyanobacteria-dominated biofilms: a high quality food resource for intertidal grazers. In: Ang, P.O. (eds) Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Developments in Hydrobiology, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0944-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0944-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3748-8

  • Online ISBN: 978-94-007-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics