Skip to main content

Structure and Biology of Trimeric Autotransporter Adhesins

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Trimeric autotransporter adhesins (TAAs) are a family of secreted Gram-negative bacterial outer membrane (OM) proteins. These obligate homotrimeric proteins share a common molecular organisation, consisting of a N-terminal “passenger” domain followed by a C-terminal translocation unit/membrane anchor. All described TAAs act as adhesins. The passenger domain is responsible for specific adhesive and other activities of the protein and has a modular architecture. Its globular head domain(s), where ligands often bind, are projected away from the bacterial surface by an extended triple α-helical coiled coil stalk attached to the β-barrel anchor. The head domains appear to be constructed from a limited set of subdomains. The β-barrel anchor is the only part of the protein strictly conserved between family members. It appears that the extracellular export of the passenger does not require an external energy source or auxiliary proteins, though recent data indicate that an OM complex (the Bam complex) is involved in passenger domain secretion. The ability to bind to a variety of host molecules such as collagen, fibronectin, laminin or cell surface receptors via a structurally diverse elements suggests that TAAs have evolved a unique mechanism which closely links structure to folding and function.

Keywords

  • Coiled Coil
  • Head Domain
  • Burkholderia Pseudomallei
  • Passenger Domain
  • Stalk Domain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

References

  • Bernstein HD (2007) Are bacterial ‘autotransporters’ really transporters? Trends Microbiol 15:441–447

    PubMed  CrossRef  CAS  Google Scholar 

  • Conners R, Hill DJ, Borodina E, Agnew C, Daniell SJ, Burton NM, Sessions RB (2008) The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil. EMBO J 27:1779–1789

    PubMed  CrossRef  CAS  Google Scholar 

  • Cotter SE, Surana NK, Grass S, St. Geme III JW (2006) Trimeric autotransporters require trimerization of the passenger domain for stability and adhesive activity. J Bacteriol 188:5400–5407

    PubMed  CrossRef  CAS  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697

    CrossRef  CAS  Google Scholar 

  • Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Ann Rev Microbiol 61:89–112

    CrossRef  CAS  Google Scholar 

  • Edwards TE, Phan I, Abendroth J, Dieterich SH, Masoudi A, Guo W, Hewitt SN, Kelley A, Leibly D, Brittnacher MJ, Staker BL, Miller SI, Van Voorhis WC, Myler PJ, Stewart LJ (2010) Structure of a Burkholderia pseudomallei trimeric autotransporter adhesin head. PLoS One 5:e12803. doi:101371

    PubMed  CrossRef  Google Scholar 

  • El Tahir Y, Skurnik M (2001) YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291:209–218

    PubMed  CrossRef  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium with special reference to their use in the isolation of B influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Grosskinsky U, Schütz M, Fritz M, Schmid Y, Lamparter MC, Szczesny P, Lupas AN, Autenrieth IB, Linke D (2007) A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A. Autotransport J Bacteriol 189:9011–9019

    CrossRef  CAS  Google Scholar 

  • Hagan CL, Kim S, Kahne D (2010) Reconstitution of outer membrane protein assembly from purified components. Science 328:890–892

    PubMed  CrossRef  CAS  Google Scholar 

  • Hartmann MD, Ridderbusch O, Zeth K, Albrecht R, Testa O, Woolfson DN, Sauer G, Dunin-Horkawicz S, Lupas AN, Hernandez Alvarez B (2009) A coiled-coil motif that sequesters ions to the hydrophobic core. Proc Natl Acad Sci USA 106:16950–16955

    PubMed  CrossRef  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744

    PubMed  CrossRef  CAS  Google Scholar 

  • Hernandez Alvarez B, Gruber M, Ursinus A, Dunin-Horkawicz S, Lupas AN, Zeth K (2010) A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesions. J Struct Biol 170:236–245

    CrossRef  Google Scholar 

  • Hodak H, Jacob-Dubuisson F (2007) Current challenges in autotransport and two-partner protein secretion pathways. Res Microbiol 158:631–637

    PubMed  CrossRef  CAS  Google Scholar 

  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    PubMed  CrossRef  CAS  Google Scholar 

  • Ieva R, Bernstein HD (2009) Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc Natl Acad Sci USA 106: 19120–19125

    PubMed  CrossRef  CAS  Google Scholar 

  • Kirjavainen V, Jarva H, Biedzka-Sarek M, Blom AM, Skurnik M, Meri S (2008) Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein. PLoS Pathog 4(8):e1000140

    Google Scholar 

  • Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease β-domain: conformation-dependent outer membrane translocation. EMBO J 9:1991–1999

    PubMed  CAS  Google Scholar 

  • Koretke KK, Szczesny P, Gruber M, Lupas AN (2006) Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica. J Struct Biol 155:154–161

    PubMed  CrossRef  CAS  Google Scholar 

  • Leo JC, Lyskowski A, Hattula K, Hartmann MD, Schwarz H, Butcher SJ, Linke D, Lupas AN, Goldman A (2011) The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins Structure 19: (in press)

    Google Scholar 

  • Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VAJ (2006) Trimeric autotransporter adhesins: variable structure common function. Trends Microbiol 14:264–270

    PubMed  CrossRef  CAS  Google Scholar 

  • Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Prot Chem 70:37–78

    CrossRef  CAS  Google Scholar 

  • Meng G, Surana NK, St Geme III JW, Waksman G (2006) Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304

    PubMed  CrossRef  CAS  Google Scholar 

  • Moutevelis E, Woolfson DN (2009) A periodic table of coiled-coil protein structures. J Mol Biol 385:726–732

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishimura K, Tajima N, Yoon Y-H, Park S-Y, Tame J (2010) Autotransporter passenger proteins: virulence factors with common structural themes. J Mol Med 88:451–458

    PubMed  CrossRef  CAS  Google Scholar 

  • Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A (2004) The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel β-roll. EMBO J 23:701–711

    PubMed  CrossRef  CAS  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–462

    PubMed  CrossRef  CAS  Google Scholar 

  • Roggenkamp A, Ackermann N, Jacobi CA, Truelzsch K, Hoffmann H, Heesemann J (2003) Molecular analysis of transport and Oligomerization of the Yersinia enterocolitica Adhesin YadA. J Bacteriol 185:3735–3744

    PubMed  CrossRef  CAS  Google Scholar 

  • Sauri A, Soprova Z, Wickström D, de Gier J-W, Van der Schors RC, Smit AB, Jong WSP, Luirink J (2009) The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155:3982–3991

    PubMed  CrossRef  CAS  Google Scholar 

  • St. Geme III JW, Cutter D (2000) The Haemophilus influenzae Hia Adhesin Is an Autotransporter Protein That Remains Uncleaved at the C Terminus and Fully Cell Associated. J Bacteriol 182:6005–6013

    Google Scholar 

  • Szabady RL, Peterson JH, Skillman KM, Bernstein HD (2005) An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci USA 102:221–226

    PubMed  CrossRef  CAS  Google Scholar 

  • Szczesny P, Linke D, Ursinus A, Bär K, Schwarz H, Riess TM, Kempf VAJ, Lupas AN, Martin J, Zeth K (2008) Structure of the head of the Bartonella Adhesin BadA. PLoS Pathog 4:e1000119

    PubMed  CrossRef  Google Scholar 

  • Szczesny P, Lupas A (2008) Domain annotation of trimeric autotransporter adhesins – daTAA. Bioinformatics 24:1251–1256

    PubMed  CrossRef  CAS  Google Scholar 

  • Veiga E, Sugawara E, Nikaido H, de Lorenzo V, Fernández LA (2002) Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO J 21:2122–2131

    PubMed  CrossRef  CAS  Google Scholar 

  • Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    PubMed  CrossRef  CAS  Google Scholar 

  • Warner JM, Pelowa DB, Currie BJ, Hirst RG (2007) Melioidosis in a rural community of Western Province Papua New Guinea. Trans R Soc Trop Med Hyg 101:809–813

    PubMed  CrossRef  CAS  Google Scholar 

  • Yeo H-J, Cotter SE, Laarmann S, Juehne T, St Geme III JW, Waksman G (2004) Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J 23:1245–1256

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Łyskowski, A., Leo, J.C., Goldman, A. (2011). Structure and Biology of Trimeric Autotransporter Adhesins. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_9

Download citation