Skip to main content

Adhesion by Pathogenic Corynebacteria

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Pathogenic members of the genus Corynebacterium cause a wide range of serious infections in humans including diphtheria. Adhesion to host cells is a crucial step during infection. In Corynebacterium diphtheriae, adhesion is mediated primarily by filamentous structures called pili or fimbriae that are covalently attached to the bacterial cell wall. C. diphtheriae produces three distinct pilus structures, SpaA-, SpaD- and SpaH-type pili. Similar to other types, the prototype SpaA pilus consists of SpaA forming the pilus shaft and two minor pilins SpaB and SpaC located at the base and at the tip, respectively. The minor pilins SpaB/SpaC are critical for bacterial binding to human pharyngeal cells, and thus represent the major adhesins of corynebacteria. Like pili of many other gram-positive microbes, the assembly of corynebacterial pili occurs by a two-step mechanism, whereby pilins are covalently polymerized by a transpeptidase enzyme named pilin-specific sortase and the generated pilus polymer is subsequently anchored to the cell wall peptidoglycan via the base pilin by the housekeeping sortase or a non-polymerizing sortase. This chapter reviews the current knowledge of corynebacterial adhesion, with a specific focus on pilus structures, their assembly, and the mechanism of adhesion mediated by pili.

Keywords

  • Diphtheria Toxin
  • Cell Wall Peptidoglycan
  • Pilus Length
  • Corynebacterium Diphtheriae
  • Corynebacterium Species

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_6
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3

References

  • Adderson EE, Boudreaux JW, Hayden RT (2008) Infections caused by coryneform bacteria in pediatric oncology patients. Pediatr Infect Dis J 27:136–141

    PubMed  Google Scholar 

  • Barksdale L (1970) Corynebacterium diphtheriae and its relatives. Bacteriol Rev 34:378–422

    PubMed  CAS  Google Scholar 

  • Bensing BA, Sullam PM (2002) An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094

    PubMed  CrossRef  CAS  Google Scholar 

  • Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187:4928–4934

    PubMed  CrossRef  CAS  Google Scholar 

  • Bonmarin I, Guiso N, Le Fleche-Mateos A, Patey O, Patrick AD, Levy-Bruhl D (2009) Diphtheria: a zoonotic disease in France? Vaccine 27:4196–4200

    PubMed  CrossRef  Google Scholar 

  • Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523

    PubMed  CrossRef  CAS  Google Scholar 

  • Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39:1793–1803

    PubMed  CrossRef  CAS  Google Scholar 

  • Colombo AV, Hirata Júnior R, Rocha de Souza CM, Monteiro-Leal LH, Previato JO, Formiga LC, Andrade AF, Mattos-Guaraldi AL (2001) Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 197:235–239

    PubMed  CrossRef  CAS  Google Scholar 

  • Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 72:2710–2722

    PubMed  CrossRef  CAS  Google Scholar 

  • Cossart P, Jonquieres R (2000) Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc Natl Acad Sci USA 97:5013–5015

    PubMed  CrossRef  CAS  Google Scholar 

  • Coyle MB, Lipsky BA (1990) Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin Microbiol Rev 3:227–246

    PubMed  CAS  Google Scholar 

  • Deacock SJ, Steward KA, Carne HR (1983) The role of adherence in determining the site of infection by Corynebacterium diphtheriae. J Hyg (Lond) 90:415–424

    CrossRef  CAS  Google Scholar 

  • Dramsi S, Trieu-Cuot P, Bierne H (2005) Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 156:289–297

    PubMed  CrossRef  CAS  Google Scholar 

  • English PC (1985) Diphtheria and theories of infectious disease: centennial appreciation of the critical role of diphtheria in the history of medicine. Pediatrics 76:1–9

    PubMed  CAS  Google Scholar 

  • Funke G, von Graevenitz A, Clarridge JE 3rd, Bernard KA (1997) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159

    PubMed  CAS  Google Scholar 

  • Gaspar AH, Ton-That H (2006) Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol 188:1526–1533

    PubMed  CrossRef  CAS  Google Scholar 

  • Grove RD, Hetzel AM (1968) Vital statistics rates in the United States 1940–1960. In: E. U.S. Department of Health E, and Welfare (ed) National Center for Health Statistics, Washington, DC, Amo Press, New York, NY, pp 587–596

    Google Scholar 

  • Guttilla IK, Gaspar AH, Swierczynski A, Swaminathan A, Dwivedi P, Das A, Ton-That H (2009) Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J Bacteriol 191:5603–5612

    PubMed  CrossRef  CAS  Google Scholar 

  • Hadfield TL, McEvoy P, Polotsky Y, Tzinserling VA, Yakovlev AA (2000) The pathology of diphtheria. J Infect Dis 181(Suppl 1):S116–S120

    PubMed  CrossRef  Google Scholar 

  • Hirata Júnior R, Souza SMS, Rocha desouza CM, Andrade AF, Monteiro-Leal LH, Formiga LC, Mattos-Guaraldi AL (2004) Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog 36:125–130

    CrossRef  Google Scholar 

  • Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181(Suppl 1):S156–S167

    PubMed  CrossRef  CAS  Google Scholar 

  • Honda E, Yanagawa R (1974) Agglutination of trypsinized sheep erythrocytes by the pili of Corynebacterium renale. Infect Immun 10:1426–1432

    PubMed  CAS  Google Scholar 

  • Honda E, Yanagawa R (1975) Attachment of Corynebacterium renale to tissue culture cells by the pili. Am J Vet Res 36:1663–1666

    PubMed  CAS  Google Scholar 

  • Isberg RR (1991) Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252:934–938

    PubMed  CrossRef  CAS  Google Scholar 

  • Kwantes W (1984) Diphtheria in Europe. J Hyg (Lond) 93:433–437

    CrossRef  CAS  Google Scholar 

  • Linder FE, Grove RD (1947) Vital statistics rates in the United States 1900–1940. In: E. U.S. Department of Health E, and Welfare (ed). National Center for Health Statistics, Washington, DC, Amo Press, New York, NY, pp 559–578

    Google Scholar 

  • Loeffler F (1884) Untersuchungen über die Bedeutung der Mikroorganismen für die Enstehung der Diphtherie beim Menschen, bei der Taube und beim Kalbe. Mitt Klin Gesundheitsamte Berlin 2:421–499

    Google Scholar 

  • Love JF, Murphy JR (2006) Corynebacterium diphtheriae: iron-mediated activation of DtxR and regulation of diphtheria toxin expression. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens. ASM Press, Washington, DC, pp 726–737

    Google Scholar 

  • Mandlik A, Das A, Ton-That H (2008a) The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA 105:14147–14152

    PubMed  CrossRef  CAS  Google Scholar 

  • Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64:111–124

    PubMed  CrossRef  CAS  Google Scholar 

  • Mandlik A, Swierczynski A, Das A, Ton-That H (2008b) Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40

    PubMed  CrossRef  CAS  Google Scholar 

  • Marty N, Agueda L, Lapchine L, Clave D, Henry-Ferry S, Chabanon G (1991) Adherence and hemagglutination of Corynebacterium group D2. Eur J Clin Microbiol Infect Dis 10:20–24

    PubMed  CrossRef  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Duarte Formiga LC, Pereira GA (2000) Cell surface components and adhesion in Corynebacterium diphtheriae. Microbes Infect 2:1507–1512

    PubMed  CrossRef  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Moreira LO, Damasco PV, Hirata Júnior R (2003) Diphtheria remains a threat to health in the developing world–an overview. Mem Inst Oswaldo Cruz 98:987–993

    PubMed  CrossRef  Google Scholar 

  • Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    PubMed  CrossRef  CAS  Google Scholar 

  • Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40:1049–1057

    PubMed  CrossRef  CAS  Google Scholar 

  • Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E (1995) Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem 270:1015–1019

    PubMed  CrossRef  CAS  Google Scholar 

  • Moreira LO, Andrade AF, Vale MD, Souza SMS, Hirata Júnior R, Asad LM, Asad NR, Monteiro-Leal LH, Previato JO, Mattos-Guaraldi AL (2003) Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol 69:5907–5913

    CrossRef  CAS  Google Scholar 

  • Moreira LO, Mattos-Guaraldi AL, Andrade AF (2008) Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 190:521–530

    PubMed  CrossRef  CAS  Google Scholar 

  • Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061

    PubMed  CrossRef  CAS  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    PubMed  CAS  Google Scholar 

  • Otsuka Y, Ohkusu K, Kawamura Y, Baba S, Ezaki T, Kimura S (2006) Emergence of multidrug-resistant Corynebacterium striatum as a nosocomial pathogen in long-term hospitalized patients with underlying diseases. Diagn Microbiol Infect Dis 54:109–114

    PubMed  CrossRef  Google Scholar 

  • Papaioannou W, Gizani S, Haffajee AD, Quirynen M, Mamai-Homata E, Papagiannoulis L (2009) The microbiota on different oral surfaces in healthy children. Oral Microbiol Immunol 24:183–189

    PubMed  CrossRef  CAS  Google Scholar 

  • Pappenheimer AM Jr (1984) The diphtheria bacillus and its toxin: a model system. J Hyg (Lond) 93:397–404

    CrossRef  CAS  Google Scholar 

  • Popovic T, Mazurova IK, Efstratiou A, Vuopio-Varkila J, Reeves MW, De Zoysa A, Glushkevich T, Grimont P (2000) Molecular epidemiology of diphtheria. J Infect Dis 181(Suppl 1):S168–S177

    PubMed  CrossRef  CAS  Google Scholar 

  • Roux E, Yersin A (1888) Contribution à l’étude de la diphtérie. Annales de l’Institut Pasteur 2:629–661

    Google Scholar 

  • Schiffl H, Mucke C, Lang SM (2004) Exit-site infections by non-diphtheria corynebacteria in CAPD. Perit Dial Int 24:454–459

    PubMed  Google Scholar 

  • Scott JR, Zahner D (2006) Pili with strong attachments: gram-positive bacteria do it differently. Mol Microbiol 62:320–330

    PubMed  CrossRef  CAS  Google Scholar 

  • Semple RH (1859) Memoirs on Diphtheria: from the writings of Bretonneau, P., Guersant, Trousseau, Bouchut, Empis, and Daviot. The New Sydenham Society, London

    Google Scholar 

  • Shulman ST (2004) The history of pediatric infectious diseases. Pediatr Res 55:163–176

    PubMed  CrossRef  Google Scholar 

  • Silva De Souza SM, Hirata Júnior R, Moreira LO, Gomes ML, Braga De Andrade AF, Bernardo-Filho M, Mattos-Guaraldi AL (2003) Influence of stannous chloride on the adhesive properties of Corynebacterium diphtheriae strains. Int J Mol Med 12:657–661

    PubMed  CAS  Google Scholar 

  • Swaminathan A, Mandlik A, Swierczynski A, Gaspar A, Das A, Ton-That H (2007) Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae. Mol Microbiol 66:961–974

    PubMed  CrossRef  CAS  Google Scholar 

  • Swierczynski A, Ton-That H (2006) Type III pilus of corynebacteria: Pilus length is determined by the level of its major pilin subunit. J Bacteriol 188:6318–6325

    PubMed  CrossRef  CAS  Google Scholar 

  • Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA 96:12424–12429

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Marraffini LA, Schneewind O (2004a) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694:269–278

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Marraffini LA, Schneewind O (2004b) Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53:251–261

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Schneewind O (2004) Assembly of pili in Gram-positive bacteria. Trends Microbiol 12:228–234

    PubMed  CrossRef  CAS  Google Scholar 

  • Vitek CR, Wharton M (1998) Diphtheria in the former Soviet Union: reemergence of a pandemic disease. Emerg Infect Dis 4:539–550

    PubMed  CrossRef  CAS  Google Scholar 

  • Wagner KS, Stickings P, White JM, Neal S, Crowcroft NS, Sesardic D, Efstratiou A (2009) A review of the international issues surrounding the availability and demand for diphtheria antitoxin for therapeutic use. Vaccine 28:14–20

    PubMed  CrossRef  CAS  Google Scholar 

  • Winau F, Winau R (2002) Emil von Behring and serum therapy. Microbes Infect 4:185–188

    PubMed  CrossRef  Google Scholar 

  • Yanagawa R, Otsuki K, Tokui, T (1968) Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn J Vet Res 16:31–37

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anjali Mandlik, Anu Swaminathan, Andrew Gasper and Arlene Swierczynski, Arunima Mishra, Chenggang Wu and Chungyu Chang for their invaluable contributions to the studies of pili; supported by grants AI061381 and DE017382 from the NIH to HTT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Ton-That .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rogers, E.A., Das, A., Ton-That, H. (2011). Adhesion by Pathogenic Corynebacteria. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_6

Download citation