Skip to main content

Adhesion Mechanisms of Plant-Pathogenic Xanthomonadaceae

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

The family Xanthomonadaceae is a wide-spread family of bacteria belonging to the gamma subdivision of the Gram-negative proteobacteria, including the two plant-pathogenic genera Xanthomonas and Xylella, and the related genus Stenotrophomonas. Adhesion is a widely conserved virulence mechanism among Gram-negative bacteria, no matter whether they are human, animal or plant pathogens, since attachment to the host tissue is one of the key early steps of the bacterial infection process. Bacterial attachment to surfaces is mediated by surface structures that are anchored in the bacterial outer membrane and cover a broad group of fimbrial and non-fimbrial structures, commonly known as adhesins. In this chapter, we discuss recent findings on candidate adhesins of plant-pathogenic Xanthomonadaceae, including polysaccharidic (lipopolysaccharides, exopolysaccharides) and proteineous structures (chaperone/usher pili, type IV pili, autotransporters, two-partner-secreted and other outer membrane adhesins), their involvement in the formation of biofilms and their mode of regulation via quorum sensing. We then compare the arsenals of adhesins among different Xanthomonas strains and evaluate their mode of selection. Finally, we summarize the sparse knowledge on specific adhesin receptors in plants and the possible role of RGD motifs in binding to integrin-like plant molecules.

Keywords

  • Xylem Vessel
  • Diffusible Signal Factor
  • Fimbrial Subunit
  • Adhesin Gene
  • Filamentous Hemagglutinin

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_5
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 5.1

References

  • Amano A (2010) Bacterial adhesins to host components in periodontitis. Periodontol 2000(52):12–37

    CrossRef  Google Scholar 

  • Astua-Monge G, Freitas-Astua J, Bacocina G, Roncoletta J, Carvalho SA, Machado MA (2005) Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J Bacteriol 187:1201–1205

    PubMed  CrossRef  CAS  Google Scholar 

  • Bahar O, Goffer T, Burdman S (2009) Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol Plant Microbe Interact 22:909–920

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhattacharyya A, Stilwagen S, Ivanova N, D’Souza M, Bernal A, Lykidis A, Kapatral V, Anderson I, Larsen N, Los T, Reznik G, Selkov Jr E, Walunas TE, Feil H, Feil WS, Purcell A, Lassez JL, Hawkins TL, Haselkorn R, Overbeek R, Predki PF, Kyrpides NC (2002) Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc Natl Acad Sci USA 99:12403–12408

    PubMed  CrossRef  CAS  Google Scholar 

  • Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133

    PubMed  CrossRef  Google Scholar 

  • Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284

    PubMed  CrossRef  CAS  Google Scholar 

  • Chatterjee S, Almeida RP, Lindow SE (2008a) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271

    PubMed  CrossRef  CAS  Google Scholar 

  • Chatterjee S, Newman KL, Lindow SE (2008b) Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microbe Interact 21:1309–1315

    PubMed  CrossRef  CAS  Google Scholar 

  • Chatterjee S, Wistrom C, Lindow SE (2008c) A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675

    PubMed  CrossRef  CAS  Google Scholar 

  • Chou FL, Chou HC, Lin YS, Yang BY, Lin NT, Weng SF, Tseng YH (1997) The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun 233:265–269

    PubMed  CrossRef  CAS  Google Scholar 

  • Cotter SE, Surana NK, Geme 3rd JW (2005) Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13:199–205

    Google Scholar 

  • Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378

    PubMed  CrossRef  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    PubMed  CrossRef  CAS  Google Scholar 

  • Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, Jacques MA (2009) Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Mol Plant Microbe Interact 22:747–757

    PubMed  CrossRef  CAS  Google Scholar 

  • Das A, Rangaraj N, Sonti RV (2009) Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol Plant Microbe Interact 22:73–85

    PubMed  CrossRef  CAS  Google Scholar 

  • Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112

    PubMed  CrossRef  CAS  Google Scholar 

  • De La Fuente L, Burr TJ, Hoch HC (2007a) Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 189:7507–7510

    CrossRef  Google Scholar 

  • De La Fuente L, Montanes E, Meng Y, Li Y, Burr TJ, Hoch HC, Wu M (2007b) Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 73:2690–2696

    CrossRef  Google Scholar 

  • de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto MH, de Oliveira RC, Nunes LR, Machado MA (2004) Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 237:341–353

    PubMed  CrossRef  Google Scholar 

  • Dharmapuri S, Sonti RV (1999) A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS Microbiol Lett 179:53–59

    PubMed  CrossRef  CAS  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000

    PubMed  CrossRef  CAS  Google Scholar 

  • Dunger G, Relling VM, Tondo ML, Barreras M, Ielpi L, Orellano EG, Ottado J (2007) Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 188:127–135

    PubMed  CrossRef  CAS  Google Scholar 

  • Faik A, Labouré AM, Gulino D, Mandaron P, Falconet D (1998) A plant surface protein sharing structural properties with animal integrins. Eur J Biochem 253:552–559

    PubMed  CrossRef  CAS  Google Scholar 

  • Feil H, Feil WS, Detter JC, Purcell AH, Lindow SE (2003) Site-directed disruption of the fimA and fimF fimbrial genes of Xylella fastidiosa. Phytopathology 93:675–682

    PubMed  CrossRef  CAS  Google Scholar 

  • Feil H, Feil WS, Lindow SE (2007) Contribution of fimbrial and afimbrial adhesins of Xylella fastidiosa to attachment to surfaces and virulence to grape. Phytopathology 97:318–324

    PubMed  CrossRef  CAS  Google Scholar 

  • Foreman-Wykert AK, Miller JF (2003) Hypervirulence and pathogen fitness. Trends Microbiol 11:105–108

    PubMed  CrossRef  CAS  Google Scholar 

  • Fouhy Y, Lucey JF, Ryan RP, Dow JM (2006) Cell-cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris. Res Microbiol 157:899–904

    PubMed  CrossRef  CAS  Google Scholar 

  • García-Ochoa F, Santos VE, Casas JE, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    PubMed  CrossRef  Google Scholar 

  • Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297:401–415

    PubMed  CrossRef  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Garofalo C, Orellano EG, Ottado J (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS One 4:e4358

    PubMed  CrossRef  Google Scholar 

  • Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rougé P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90

    PubMed  CrossRef  CAS  Google Scholar 

  • Guilhabert MR, Kirkpatrick BC (2005) Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol Plant Microbe Interact 18:856–868

    PubMed  CrossRef  CAS  Google Scholar 

  • Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C, Manceau C, Boureau T, Poussier S (2009) A “repertoire for repertoire” hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS One 4:e6632

    PubMed  CrossRef  Google Scholar 

  • He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, Zhang LH (2007) Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64:281–292

    PubMed  CrossRef  CAS  Google Scholar 

  • He YW, Xu M, Lin K, Ng YJ, Wen CM, Wang LH, Liu ZD, Zhang HB, Dong YH, Dow JM, Zhang LH (2006) Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59:610–622

    PubMed  CrossRef  CAS  Google Scholar 

  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    PubMed  CrossRef  CAS  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: From mechanism to control. Biochem Eng J 48:424–434

    CrossRef  CAS  Google Scholar 

  • Hugouvieux V, Barber CE, Daniels MJ (1998) Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Mol Plant Microbe Interact 11:537–543

    PubMed  CrossRef  CAS  Google Scholar 

  • Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    PubMed  CrossRef  CAS  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    PubMed  CrossRef  CAS  Google Scholar 

  • Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC, Berger B, Clark PL (2006) Pertactin β-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci USA 103:4918–4923

    PubMed  CrossRef  CAS  Google Scholar 

  • Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    PubMed  CrossRef  CAS  Google Scholar 

  • Kline KA, Dodson KW, Caparon MG, Hultgren SJ (2010) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18:224–232

    PubMed  CrossRef  CAS  Google Scholar 

  • Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592

    PubMed  CrossRef  CAS  Google Scholar 

  • Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    PubMed  CrossRef  CAS  Google Scholar 

  • Labouré AM, Faik A, Mandaron P, Falconet D (1999) RGD-dependent growth of maize calluses and immunodetection of an integrin-like protein. FEBS Lett 442:123–128

    PubMed  CrossRef  Google Scholar 

  • Li Y, Hao G, Galvani CD, Meng Y, De La Fuente L, Hoch HC, Burr TJ (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153:719–726

    PubMed  CrossRef  CAS  Google Scholar 

  • Lim SH, So BH, Wang JC, Song ES, Park YJ, Lee BM, Kang HW (2008) Functional analysis of pilQ gene in Xanthomonas oryzae pv. oryzae, bacterial blight pathogen of rice. J Microbiol 46:214–220

    PubMed  CrossRef  CAS  Google Scholar 

  • Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    PubMed  CrossRef  CAS  Google Scholar 

  • Lu GT, Ma ZF, Hu JR, Tang DJ, He YQ, Feng JX, Tang JL (2007) A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris. Microbiology 153:737–746

    PubMed  CrossRef  CAS  Google Scholar 

  • Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz J, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ (2008) Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS One 3:e3828

    PubMed  CrossRef  Google Scholar 

  • Lü B, Chen F, Gong ZH, Xie H, Zhang JH, Liang JS (2007) Intracellular localization of integrin-like protein and its roles in osmotic stress-induced abscisic acid biosynthesis in Zea mays. Protoplasma 232:35–43

    PubMed  CrossRef  Google Scholar 

  • Mazar J, Cotter PA (2006) Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. Mol Microbiol 62:641–654

    PubMed  CrossRef  CAS  Google Scholar 

  • Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567

    PubMed  CrossRef  CAS  Google Scholar 

  • Mhedbi-Hajri N, Darrasse A, Pigné S, Durand K, Fouteau S, Barbe V, Manceau C, Lemaire C, Jacques MA (2011) Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evol Biol (in press)

    Google Scholar 

  • Moreira LM, de Souza RF, Almeida Jr NF, Setubal JC, Oliveira JC, Furlan LR, Ferro JA, da Silva AC (2004) Comparative genomics analyses of citrus-associated bacteria. Annu Rev Phytopathol 42:163–184

    PubMed  CrossRef  CAS  Google Scholar 

  • Newman KL, Almeida RP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327

    PubMed  CrossRef  CAS  Google Scholar 

  • Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A (2004) The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J 23:701–711

    PubMed  CrossRef  CAS  Google Scholar 

  • Ojanen-Reuhs T, Kalkkinen N, Westerlund-Wikström B, van Doorn J, Haahtela K, Nurmiaho-Lassila EL, Wengelnik K, Bonas U, Korhonen TK (1997) Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 179:1280–1290

    PubMed  CAS  Google Scholar 

  • Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727

    PubMed  CrossRef  Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20:1025–1031

    PubMed  CrossRef  CAS  Google Scholar 

  • Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767

    PubMed  CrossRef  CAS  Google Scholar 

  • Ray SK, Rajeshwari R, Sharma Y, Sonti RV (2002) A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol 46:637–647

    PubMed  CrossRef  CAS  Google Scholar 

  • Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222–1230

    PubMed  CrossRef  CAS  Google Scholar 

  • Roine E, Raineri DM, Romantschuk M, Wilson M, Nunn DN (1998) Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 11:1048–1056

    PubMed  CrossRef  CAS  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Cámara M, Williams P, Dow JM (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103:6712–6717

    PubMed  CrossRef  CAS  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    PubMed  CrossRef  CAS  Google Scholar 

  • Schindler M, Meiners S, Cheresh DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: consequences for growth. J Cell Biol 108:1955–1965

    PubMed  CrossRef  CAS  Google Scholar 

  • Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502–509

    PubMed  CrossRef  CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith AM, Guzmán CA, Walker MJ (2001) The virulence factors of Bordetella pertussis: a matter of control. FEMS Microbiol Rev 25:309–333

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith SG, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11

    PubMed  CrossRef  CAS  Google Scholar 

  • St. Geme 3rd JW, Yeo HJ (2009) A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems. Trends Microbiol 17:355–360

    Google Scholar 

  • Tahara ST, Mehta A, Rosato YB (2003) Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis). Proteomics 3:95–102

    Google Scholar 

  • Takagi I (2004) Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans 32:403–406

    PubMed  CrossRef  CAS  Google Scholar 

  • Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109

    PubMed  CrossRef  Google Scholar 

  • van Doorn J, Boonekamp PM, Oudega B (1994) Partial characterization of fimbriae of Xanthomonas campestris pv. hyacinthi. Mol Plant Microbe Interact 7:334–344

    PubMed  CrossRef  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    PubMed  CrossRef  Google Scholar 

  • Van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB, Miyaki CY, Furlan LR et al (2003) Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185:1018–1026

    PubMed  CrossRef  Google Scholar 

  • van der Woude MW, Henderson IR (2008) Regulation and function of Ag43 (flu). Annu Rev Microbiol 62:153–169

    PubMed  CrossRef  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang L, Makino S, Subedee A, Bogdanove AJ (2007) Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl Environ Microbiol 73:8023–8027

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Maurice Lesourd and Robert Filmon from the Service Commun d’Imagerie et d’Analyses Microscopiques, Faculté de Médecine, Université d’Angers, France, for help with scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Koebnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mhedbi-Hajri, N., Jacques, MA., Koebnik, R. (2011). Adhesion Mechanisms of Plant-Pathogenic Xanthomonadaceae . In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_5

Download citation