Skip to main content

Adhesins of Bartonella spp.

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts.

Keywords

  • Vascular Endothelial Growth Factor
  • Erythrocyte Infection
  • Peliosis Hepatis
  • Bartonella Species
  • Bacterial Effector

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_4
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3

References

  • Alsmark CM, Frank AC, Karlberg EO, Legault BA, Ardell DH, Canback B et al (2004) The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci USA 101:9716–9721

    PubMed  CrossRef  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CrossRef  CAS  Google Scholar 

  • Aly KA, Baron C (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–3775

    PubMed  CrossRef  CAS  Google Scholar 

  • Anderson BE, Neuman MA (1997) Bartonella spp. as emerging human pathogens. Clin Microbiol Rev 10:203–219

    PubMed  CAS  Google Scholar 

  • Angelakis E, Pulcini C, Waton J, Imbert P, Socolovschi C, Edouard S et al (2010) Scalp eschar and neck lymphadenopathy caused by Bartonella henselae after Tick Bite. Clin Infect Dis 50:549–551

    PubMed  CrossRef  Google Scholar 

  • Barocchi MA, Masignani V, Rappuoli R (2005) Opinion: cell entry machines: a common theme in nature? Nat Rev Microbiol 3:349–358

    PubMed  CrossRef  CAS  Google Scholar 

  • Batterman HJ, Peek JA, Loutit JS, Falkow S, Tompkins LS (1995) Bartonella henselae and Bartonella quintana adherence to and entry into cultured human epithelial cells. Infect Immun 63:4553–4556

    PubMed  CAS  Google Scholar 

  • Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (2008) Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med Vet Entomol 22:1–15

    PubMed  CrossRef  CAS  Google Scholar 

  • Bolin I, Norlander L, Wolf-Watz H (1982) Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect Immun 37:506–512

    PubMed  CAS  Google Scholar 

  • Bown KJ, Bennet M, Begon M (2004) Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerg Infect Dis 10:684–687

    PubMed  Google Scholar 

  • Brouqui P, LaScola B, Roux V, Raoult D (1999) Chronic Bartonella quintana bacteraemia in homeless patients. N Engl J Med 340:184–189

    PubMed  CrossRef  CAS  Google Scholar 

  • Burgess AW, Anderson BE (1998) Outer membrane proteins of Bartonella henselae and their interaction with human endothelial cells. Microb Pathog 25:157–164

    PubMed  CrossRef  CAS  Google Scholar 

  • Burgess AW, Paquet JY, Letesson JJ, Anderson BE (2000) Isolation, sequencing and expression of Bartonella henselae omp43 and predicted membrane topology of the deduced protein. Microb Pathog 29:73–80

    PubMed  CrossRef  CAS  Google Scholar 

  • Chang CC, Chomel BB, Kasten RW, Romano V, Tietze N (2001) Molecular evidence of Bartonella spp. in questing adult Ixodes pacificus ticks in California. J Clin Microbiol 39:1221–1226

    PubMed  CrossRef  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    PubMed  CrossRef  CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    PubMed  CrossRef  CAS  Google Scholar 

  • Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C et al (2007) Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317:957–961

    PubMed  CrossRef  CAS  Google Scholar 

  • Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, Capecchi B et al (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195:1445–1454

    PubMed  CrossRef  CAS  Google Scholar 

  • Cotte V, Bonnet S, Le RD, Le NE, Chauvin A, Boulouis HJ et al (2008) Transmission of Bartonella henselae by Ixodes ricinus. Emerg Infect Dis 14:1074–1080

    PubMed  CrossRef  CAS  Google Scholar 

  • Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF (1998) Filamentous haemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 66:5921–5929

    PubMed  CAS  Google Scholar 

  • Coutte L, Alonso S, Reveneau N, Willery E, Quatannens B, Locht C, Jacob-Dubuisson F (2003a) Role of adhesin release for mucosal colonization by a bacterial pathogen. J Exp Med 197:735–742

    PubMed  CrossRef  CAS  Google Scholar 

  • Coutte L, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F (2001) Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 20:5040–5048

    PubMed  CrossRef  CAS  Google Scholar 

  • Coutte L, Willery E, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F (2003b) Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 49:529–539

    PubMed  CrossRef  CAS  Google Scholar 

  • Dehio C (2005) Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol 3:621–631

    PubMed  CrossRef  CAS  Google Scholar 

  • Dietrich F, Schmidgen T, Maggi RG, Richter D, Matuschka FR, Vonthein R et al (2010) Prevalence of Bartonella henselae and Borrelia burgdorferi sensu lato DNA in Ixodes ricinus ticks in Europe. Appl Environ Microbiol 76:1395–1398

    Google Scholar 

  • Eremeeva ME, Gerns HL, Lydy SL, Goo JS, Ryan ET, Mathew SS et al (2007) Bacteraemia, fever, and splenomegaly caused by a newly recognized Bartonella species. N Engl J Med 356:2381–2387

    PubMed  CrossRef  CAS  Google Scholar 

  • Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    PubMed  CrossRef  CAS  Google Scholar 

  • Foucault C, Rolain JM, Raoult D, Brouqui P (2004) Detection of Bartonella quintana by direct immunofluorescence examination of blood smears of a patient with acute trench fever. J Clin Microbiol 42:4904–4906

    PubMed  CrossRef  CAS  Google Scholar 

  • Fuhrmann O, Arvand M, Gohler A, Schmid M, Krüll M, Hippenstiel S et al (2001) Bartonella henselae induces NF-κB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors. Infect Immun 69:5088–5097

    PubMed  CrossRef  CAS  Google Scholar 

  • Garcia FU, Wojta J, Broadley KN, Davidson JM, Hoover RL (1990) Bartonella bacilliformis stimulates endothelial cells in vitro and is angiogenic in vivo. Am J Pathol 136:1125–1135

    PubMed  CAS  Google Scholar 

  • Gilmore RD Jr., Bellville TM, Sviat SL, Frace M (2005) The Bartonella vinsonii subsp. arupensis immunodominant surface antigen BrpA gene, encoding a 382-kilodalton protein composed of repetitive sequences, is a member of a multigene family conserved among Bartonella species. Infect Immun 73:3128–3136

    PubMed  CrossRef  CAS  Google Scholar 

  • Grosskinsky U, Schütz M, Fritz M, Schmid Y, Lamparter MC, Szczesny P et al (2007) A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A autotransport. J Bacteriol 189:9011–9019

    PubMed  CrossRef  CAS  Google Scholar 

  • Hannah JH, Menozzi FD, Renauld G, Locht C, Brennan MJ (1994) Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous haemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect Immun 62:5010–5019

    PubMed  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, a’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744

    PubMed  CrossRef  CAS  Google Scholar 

  • Henn JB, Chomel BB, Boulouis HJ, Kasten RW, Murray WJ, Bar-Gal GK et al (2009) Bartonella rochalimae in raccoons, coyotes, and red foxes. Emerg Infect Dis 15:1984–1987

    PubMed  CrossRef  Google Scholar 

  • Hercik K, Hasova V, Janecek J, Branny P (2007) Molecular evidence of Bartonella DNA in ixodid ticks in Czechia. Folia Microbiol (Praha) 52:503–509

    CrossRef  CAS  Google Scholar 

  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    PubMed  CrossRef  CAS  Google Scholar 

  • Hultgren SJ, Abraham S, Caparon M, Falk P, St GJ III, Normark S (1993) Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73:887–901

    PubMed  CrossRef  CAS  Google Scholar 

  • Inatsuka CS, Julio SM, Cotter PA (2005) Bordetella filamentous haemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc Natl Acad Sci USA 102:18578–18583

    PubMed  CrossRef  CAS  Google Scholar 

  • Ishibashi Y, Nishikawa A (2002) Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous haemagglutinin and pertussis toxin. Microb Pathog 33:115–125

    PubMed  CrossRef  CAS  Google Scholar 

  • Ishibashi Y, Nishikawa A (2003) Role of nuclear factor-κ B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis. Microb Pathog 35:169–177

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaiser PO, Riess T, O’Rourke F, Linke D, Kempf VA (2011) Bartonella spp.: throwing light on uncommon human infections. Int J Med Microbiol 301:7–15

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaiser PO, Riess T, Wagner CL, Linke D, Lupas AN, Schwarz H et al (2008) The head of Bartonella adhesin A is crucial for host cell interaction of Bartonella henselae. Cell Microbiol 10:2223–2234

    PubMed  CrossRef  CAS  Google Scholar 

  • Kelly P, Rolain JM, Maggi R, Sontakke S, Keene B, Hunter S et al (2006) Bartonella quintana endocarditis in dogs. Emerg Infect Dis 12:1869–1872

    PubMed  Google Scholar 

  • Kempf VA, Hitziger N, Riess T, Autenrieth IB (2002) Do plant and human pathogens have a common pathogenicity strategy? Trends Microbiol 10:269–275

    PubMed  CrossRef  CAS  Google Scholar 

  • Kempf VA, Lebiedziejewski M, Alitalo K, Wälzlein JH, Ehehalt U, Fiebig J et al (2005) Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation 111:1054–1062

    PubMed  CrossRef  CAS  Google Scholar 

  • Kempf VA, Schaller M, Behrendt S, Volkmann B, Aepfelbacher M, Cakman I, Autenrieth IB (2000) Interaction of Bartonella henselae with endothelial cells results in rapid bacterial rRNA synthesis and replication. Cell Microbiol 2:431–441

    PubMed  CrossRef  CAS  Google Scholar 

  • Kempf VA, Volkmann B, Schaller M, Sander CA, Alitalo K, Riess T, Autenrieth IB (2001) Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 3:623–632

    PubMed  CrossRef  CAS  Google Scholar 

  • Keret D, Giladi M, Kletter Y, Wientroub S (1998) Cat-scratch disease osteomyelitis from a dog scratch. J Bone Joint Surg Br 80:766–767

    PubMed  CrossRef  CAS  Google Scholar 

  • Kirby JE (2004) In vitro model of Bartonella henselae-induced angiogenesis. Infect Immun 72:7315–7317

    PubMed  CrossRef  CAS  Google Scholar 

  • Koretke KK, Szczesny P, Gruber M, Lupas AN (2006) Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica. J Struct Biol 155:154–161

    PubMed  CrossRef  CAS  Google Scholar 

  • Kosoy M, Morway C, Sheff KW, Bai Y, Colborn J, Chalcraft L et al (2008) Bartonella tamiae sp. nov., a newly recognized pathogen isolated from three human patients from Thailand. J Clin Microbiol 46:772–775

    PubMed  CrossRef  Google Scholar 

  • Kunz S, Oberle K, Sander A, Bogdan C, Schleicher U (2008) Lymphadenopathy in a novel mouse model of Bartonella-induced cat scratch disease results from lymphocyte immigration and proliferation and is regulated by interferon-α/β. Am J Pathol 172:1005–1018

    PubMed  CrossRef  CAS  Google Scholar 

  • Kyme PA, Haas A, Schaller M, Peschel A, Iredell J, Kempf VA (2005) Unusual trafficking pattern of Bartonella henselae-containing vacuoles in macrophages and endothelial cells. Cell Microbiol 7:1019–1034

    PubMed  CrossRef  CAS  Google Scholar 

  • Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    PubMed  CrossRef  CAS  Google Scholar 

  • Mändle T, Einsele H, Schaller M, Neumann D, Vogel W, Autenrieth IB, Kempf VA (2005) Infection of human CD34+ progenitor cells with Bartonella henselae results in intraerythrocytic presence of B. henselae. Blood 106:1215–1222

    PubMed  CrossRef  Google Scholar 

  • Mackichan JK, Gerns HL, Chen YT, Zhang P, Koehler JE (2008) A SacB mutagenesis strategy reveals that the Bartonella quintana variably expressed outer membrane proteins are required for bloodstream infection of the host. Infect Immun 76:788–795

    PubMed  CrossRef  CAS  Google Scholar 

  • Makhov AM, Hannah JH, Brennan MJ, Trus BL, Kocsis E, Conway JF et al (1994) Filamentous haemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in β strands and turns. J Mol Biol 241: 110–124

    PubMed  CrossRef  CAS  Google Scholar 

  • Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11:293–299

    PubMed  CrossRef  CAS  Google Scholar 

  • Mazar J, Cotter PA (2006) Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. Mol Microbiol 62:641–654

    PubMed  CrossRef  CAS  Google Scholar 

  • McGuirk P, Mills KH (2000) Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous haemagglutinin from Bordetella pertussis. Eur J Immunol 30:415–422

    PubMed  CrossRef  CAS  Google Scholar 

  • Meng G, Surana NK, St GJ III, Waksman G (2006) Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304

    PubMed  CrossRef  CAS  Google Scholar 

  • Morales SC, Breitschwerdt EB, Washabau RJ, Matise I, Maggi RG, Duncan AW (2007) Detection of Bartonella henselae DNA in two dogs with pyogranulomatous lymphadenitis. J Am Vet Med Assoc 230:681–685

    PubMed  CrossRef  CAS  Google Scholar 

  • Mota LJ, Journet L, Sorg I, Agrain C, Cornelis GR (2005) Bacterial injectisomes: needle length does matter. Science 307:1278

    PubMed  CrossRef  Google Scholar 

  • Nicholson TL, Brockmeier SL, Loving CL (2009) Contribution of Bordetella bronchiseptica filamentous haemagglutinin and pertactin to respiratory disease in swine. Infect Immun 77:2136–2146

    PubMed  CrossRef  CAS  Google Scholar 

  • Niemann HH, Schubert WD, Heinz DW (2004) Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect 6:101–112

    PubMed  CrossRef  CAS  Google Scholar 

  • Nystedt B, Frank AC, Thollesson M, Andersson SG (2008) Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol 25:287–300

    PubMed  CrossRef  CAS  Google Scholar 

  • Padmalayam I, Karem K, Baumstark B, Massung R (2000) The gene encoding the 17-kDa antigen of Bartonella henselae is located within a cluster of genes homologous to the virB virulence operon. DNA Cell Biol 19:377–382

    PubMed  CrossRef  CAS  Google Scholar 

  • Pines E, Barrand M, Fabre P, Salomon H, Blondeau C, Wood SC, Hoffenbach A (1999) New acellular pertussis-containing paediatric combined vaccines. Vaccine 17:1650–1656

    PubMed  CrossRef  CAS  Google Scholar 

  • Podsiadly E, Chmielewski T, Sochon E, Tylewska-Wierzbanowska S (2007) Bartonella henselae in Ixodes ricinus ticks removed from dogs. Vector Borne Zoonotic Dis 7:189–192

    PubMed  CrossRef  Google Scholar 

  • Prasad SM, Yin Y, Rodzinski E, Tuomanen EI, Masure HR (1993) Identification of a carbohydrate recognition domain in filamentous haemagglutinin from Bordetella pertussis. Infect Immun 61:2780–2785

    PubMed  CAS  Google Scholar 

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    PubMed  CrossRef  CAS  Google Scholar 

  • Pulliainen AT, Dehio C (2009) Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int J Biochem Cell Biol 41:507–510

    PubMed  CrossRef  CAS  Google Scholar 

  • Raoult D, Dutour O, Houhamdi L, Jankauskas R, Fournier PE, Ardagna Y et al (2006a) Evidence for louse-transmitted diseases in soldiers of Napoleon’s Grand Army in Vilnius. J Infect Dis 193:112–120

    PubMed  CrossRef  CAS  Google Scholar 

  • Raoult D, Roblot F, Rolain JM, Besnier JM, Loulergue J, Bastides F, Choutet P (2006b) First isolation of Bartonella alsatica from a valve of a patient with endocarditis. J Clin Microbiol 44:278–279

    PubMed  CrossRef  Google Scholar 

  • Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, Fedorov EG et al (2005) Tickborne pathogen detection, Western Siberia, Russia. Emerg Infect Dis 11:1708–1715

    PubMed  Google Scholar 

  • Ray SK, Rajeshwari R, Sharma Y, Sonti RV (2002) A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol 46:637–647

    PubMed  CrossRef  CAS  Google Scholar 

  • Relman DA, Falkow S, LeBoit PE, Perkocha LA, Min KW, Welch DF, Slater LN (1991) The organism causing bacillary angiomatosis, peliosis hepatis, and fever and bacteraemia in immunocompromised patients. N Engl J Med 324:1514

    PubMed  CAS  Google Scholar 

  • Relman DA, Loutit JS, Schmidt TM, Falkow S, Tompkins LS (1990) The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N Engl J Med 323:1573–1580

    PubMed  CrossRef  CAS  Google Scholar 

  • Riess T, Andersson SG, Lupas A, Schaller M, Schäfer A, Kyme P et al (2004) Bartonella adhesin A mediates a proangiogenic host cell response. J Exp Med 200:1267–1278

    PubMed  CrossRef  CAS  Google Scholar 

  • Riess T, Raddatz G, Linke D, Schäfer A, Kempf VA (2007) Analysis of Bartonella adhesin A expression reveals differences between various B. henselae strains. Infect Immun 75:35–43

    PubMed  CrossRef  CAS  Google Scholar 

  • Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A (2002) HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci USA 99:13142–13147

    PubMed  CrossRef  CAS  Google Scholar 

  • Rolain JM, Franc M, Davoust B, Raoult D (2003) Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis 9:338–342

    PubMed  CAS  Google Scholar 

  • Rolain JM, Foucault C, Brouqui P, Raoult D (2003) Erythroblast cells as a target for Bartonella quintana in homeless people. Ann N Y Acad Sci 990:485–487

    PubMed  CrossRef  CAS  Google Scholar 

  • Saenz HL, Engel P, Stoeckli MC, Lanz C, Raddatz G, Vayssier-Taussat M et al (2007) Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nat Genet 39:1469–1476

    PubMed  CrossRef  CAS  Google Scholar 

  • Sanogo YO, Zeaiter Z, Caruso G, Merola F, Shpynov S, Brouqui P, Raoult D (2003) Bartonella henselae in Ixodes ricinus ticks (Acari: Ixodida) removed from humans, Belluno province, Italy. Emerg Infect Dis 9:329–332

    PubMed  Google Scholar 

  • Scheidegger F, Ellner Y, Guye P, Rhomberg TA, Weber H, Augustin HG, Dehio C (2009) Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation. Cell Microbiol 11:1088–1101

    PubMed  CrossRef  CAS  Google Scholar 

  • Schmid MC, Scheidegger F, Dehio M, Balmelle-Devaux N, Schulein R, Guye P et al (2006) A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLoS Pathog 2:e115

    PubMed  CrossRef  Google Scholar 

  • Schmid MC, Schülein R, Dehio M, Denecker G, Carena I, Dehio C (2004) The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 52:81–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Schülein R, Dehio C (2002) The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol Microbiol 46:1053–1067

    PubMed  CrossRef  Google Scholar 

  • Schülein R, Guye P, Rhomberg TA, Schmid MC, Schroder G, Vergunst AC et al (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci USA 102:856–861

    PubMed  CrossRef  Google Scholar 

  • Schülein R, Seubert A, Gille C, Lanz C, Hansmann Y, Piemont Y, Dehio C (2001) Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med 193:1077–1086

    PubMed  CrossRef  Google Scholar 

  • Schulte B, Linke D, Klumpp S, Schaller M, Riess T, Autenrieth IB, Kempf VA (2006) Bartonella quintana variably expressed outer membrane proteins mediate vascular endothelial growth factor secretion but not host cell adherence. Infect Immun 74:5003–5013

    PubMed  CrossRef  CAS  Google Scholar 

  • Schultz MG (1968) A history of bartonellosis (Carrión’s disease). Am J Trop Med Hyg 17:503–515

    PubMed  CAS  Google Scholar 

  • Seubert A, Hiestand R, de la CF, Dehio C (2003) A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 49:1253–1266

    PubMed  CrossRef  CAS  Google Scholar 

  • Spach DH, Kanter AS, Dougherty MJ, Larson AM, Coyle MB, Brenner DJ et al (1995) Bartonella (Rochalimaea) quintana bacteraemia in inner-city patients with chronic alcoholism. N Engl J Med 332:424–428

    PubMed  CrossRef  CAS  Google Scholar 

  • Szczesny P, Linke D, Ursinus A, Bar K, Schwarz H, Riess TM et al (2008) Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 4:e1000119

    PubMed  CrossRef  Google Scholar 

  • Szczesny P, Lupas A (2008) Domain annotation of trimeric autotransporter adhesins–daTAA. Bioinformatics 24:1251–1256

    PubMed  CrossRef  CAS  Google Scholar 

  • Vayssier-Taussat M, Le RD, Deng HK, Biville F, Cescau S, Danchin A et al (2010) The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog 6:e1000946

    PubMed  CrossRef  Google Scholar 

  • Wagner CL, Riess T, Linke D, Eberhardt C, Schäfer A, Reutter S et al (2008) Use of Bartonella adhesin A (BadA) immunoblotting in the serodiagnosis of Bartonella henselae infections. Int J Med Microbiol 298:579–590

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang P, Chomel BB, Schau MK, Goo JS, Droz S, Kelminson KL et al (2004) A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci USA 101:13630–13635

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang P, Dolganov G, Gerns H, Heinemeyer E, Goo JS, Koehler JE (2007) Expression of the Bartonella quintana Vomp trimeric autotransporter adhesin familiy is regulated by several mechanisms. Poster presentation at the 107th General Meeting American Society of Microbiology, Toronto, Canada, 226, 21 May 2007

    Google Scholar 

Download references

Acknowledgments

Parts of this manuscript have been reprinted in a modified form from “Kaiser, P.O., Riess, T., O’Rourke, F., Linke, D., and Kempf, V.A. (2011). Bartonella spp.: throwing light on uncommon human infections. Int J Med Microbiol 301: 7–15”.

The work of V. Kempf is supported by grants from the Deutsche Forschungsgemeinschaft (DFG). We thank Heinz Schwarz and Jürgen Berger (Max Planck-Institut Tübingen, Germany) for providing electron microscopy of B. henselae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkhard A.J. Kempf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

O’Rourke, F., Schmidgen, T., Kaiser, P.O., Linke, D., Kempf, V.A. (2011). Adhesins of Bartonella spp.. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_4

Download citation