Skip to main content

Adhesion Mechanisms of Borrelia burgdorferi

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

The Borrelia are widely distributed agents of Lyme disease and Relapsing Fever. All are vector-borne zoonotic pathogens, have segmented genomes, and enigmatic mechanisms of pathogenesis. Adhesion to mammalian and tick substrates is one pathogenic mechanism that has been widely studied. At this point, the primary focus of research in this area has been on Borrelia burgdorferi, one agent of Lyme disease, but many of the adhesins of B. burgdorferi are conserved in other Lyme disease agents, and some are conserved in the Relapsing Fever Borrelia. B. burgdorferi adhesins that mediate attachment to cell-surface molecules may influence the host response to the bacteria, while adhesins that mediate attachment to soluble proteins or extracellular matrix components may cloak the bacterial surface from recognition by the host immune system as well as facilitate colonization of tissues. While targeted mutations in the genes encoding some adhesins have been shown to affect the infectivity and pathogenicity of B. burgdorferi, much work remains to be done to understand the roles of the adhesins in promoting the persistent infection required to maintain the bacteria in reservoir hosts.

Keywords

  • Lyme Disease
  • Phage Display
  • Borrelia Burgdorferi
  • Outer Surface Protein
  • Relapse Fever

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

References

  • Alitalo A, Meri T, Lankinen H, Seppälä I, Lahdenne P, Hefty PS, Akins D, Meri S (2002) Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol 169:3847–3853

    PubMed  CAS  Google Scholar 

  • Alitalo A, Meri T, Rämö L, Jokiranta TS, Heikkilä T, Seppälä IJ, Oksi J, Viljanen M, Meri S (2001) Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect Immun 69:3685–3691

    PubMed  CrossRef  CAS  Google Scholar 

  • Antonara S, Chafel RM, LaFrance M, Coburn J (2007) Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol 66:262–276

    PubMed  CrossRef  CAS  Google Scholar 

  • Bankhead T, Chaconas G (2007) The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65:1547–1558

    PubMed  CrossRef  CAS  Google Scholar 

  • Barthold SW, Moody KD, Terwilliger GA, Jacoby RO, Steere AC (1988) An animal model for Lyme arthritis. Ann NY Acad Sci 539:264–273

    PubMed  CrossRef  CAS  Google Scholar 

  • Battisti JM, Bono JL, Rosa PA, Schrumpf ME, Schwan TG, Policastro PF (2008) Outer surface protein A protects Lyme disease spirochetes from acquired host immunity in the tick vector. Infect Immun 76:5228–5237

    PubMed  CrossRef  CAS  Google Scholar 

  • Behera AK, Durand E, Cugini C, Antonara S, Bourassa L, Hildebrand E, Hu LT, Coburn J (2008) Borrelia burgdorferi BBB07 interaction with integrin α3β1 stimulates production of pro-inflammatory mediators in primary human chondrocytes. Cell Microbiol 10:320–331

    PubMed  CAS  Google Scholar 

  • Behera AK, Hildebrand E, Uematsu S, Akira S, Coburn J, Hu LT (2006) Identification of a TLR-independent pathway for Borrelia burgdorferi-induced expression of matrix metalloproteinases and inflammatory mediators through binding to integrin α3β1. J Immunol 177:657–664

    PubMed  CAS  Google Scholar 

  • Blevins JS, Hagman KE, Norgard MV (2008) Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8:82

    PubMed  CrossRef  Google Scholar 

  • Brissette CA, Bykowski T, Cooley AE, Bowman A, Stevenson B (2009a) Borrelia burgdorferi RevA antigen binds host fibronectin. Infect Immun 77:2802–2812

    PubMed  CrossRef  CAS  Google Scholar 

  • Brissette CA, Cooley AE, Burns LH, Riley SP, Verma A, Woodman ME, Bykowski T, Stevenson B (2008) Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection. Int J Med Microbiol 298(Suppl 1):257–267

    PubMed  CrossRef  Google Scholar 

  • Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B (2009b) The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology 155:863–872

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown EL, Guo BP, O’Neal P, Höök M (1999) Adherence of Borrelia burgdorferi. Identification of critical lysine residues in DbpA required for decorin binding. J Biol Chem 274:26272–26278

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown EL, Wooten RM, Johnson BJ, Iozzo RV, Smith A, Dolan MC, Guo BP, Weis JJ, Höök M (2001) Resistance to Lyme disease in decorin-deficient mice. J Clin Invest 107:845–852

    PubMed  CrossRef  CAS  Google Scholar 

  • Bryksin AV, Godfrey HP, Carbonaro CA, Wormser GP, Aguero-Rosenfeld ME, Cabello FC (2005) Borrelia burgdorferi BmpA, BmpB, and BmpD proteins are expressed in human infection and contribute to P39 immunoblot reactivity in patients with Lyme disease. Clin Diagn Lab Immunol 12:935–940

    PubMed  CAS  Google Scholar 

  • Byram R, Stewart PE, Rosa P (2004) The essential nature of the ubiquitous 26-kilobase circular replicon of Borrelia burgdorferi. J Bacteriol 186:3561–3569

    PubMed  CrossRef  CAS  Google Scholar 

  • Carroll JA, El-Hage N, Miller JC, Babb K, Stevenson B (2001) Borrelia burgdorferi RevA antigen is a surface-exposed outer membrane protein whose expression is regulated in response to environmental temperature and pH. Infect Immun 69:5286–5293

    PubMed  CrossRef  CAS  Google Scholar 

  • Casjens S, Palmer N, Van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    PubMed  CrossRef  CAS  Google Scholar 

  • Coburn J, Chege W, Magoun L, Bodary SC, Leong JM (1999) Characterization of a candidate Borrelia burgdorferi beta3-chain integrin ligand identified using a phage display library. Mol Microbiol 34:926–940

    PubMed  CrossRef  CAS  Google Scholar 

  • Coburn J, Cugini C (2003) Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci USA 100:7301–7306

    PubMed  CrossRef  CAS  Google Scholar 

  • Coburn J, Leong JM, Erban JK (1993) Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci USA 90:7059–7063

    PubMed  CrossRef  CAS  Google Scholar 

  • Coburn J, Magoun L, Bodary SC, Leong JM (1998) Integrins αvβ3 and α5β1 mediate attachment of Lyme disease spirochetes to human cells. Infect Immun 66:1946–1952

    PubMed  CAS  Google Scholar 

  • Comstock LE, Fikrig E, Shoberg RJ, Flavell RA, Thomas DD (1993) A monoclonal antibody to OspA inhibits association of Borrelia burgdorferi with human endothelial cells. Infect Immun 61:423–431

    PubMed  CAS  Google Scholar 

  • Dobrikova EY, Bugrysheva J, Cabello FC (2001) Two independent transcriptional units control the complex and simultaneous expression of the bmp paralogous chromosomal gene family in Borrelia burgdorferi. Mol Microbiol 39:370–379

    PubMed  CrossRef  CAS  Google Scholar 

  • Dresser AR, Hardy PO, Chaconas G (2009) Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase. PLoS Pathog 5:e1000680

    PubMed  CrossRef  Google Scholar 

  • Fikrig E, Feng W, Barthold SW, Telford SR 3rd, Flavell RA (2000) Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J Immunol 164:5344–5351

    PubMed  CAS  Google Scholar 

  • Fischer JR, LeBlanc KT, Leong JM (2006) Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 74:435–441

    PubMed  CrossRef  CAS  Google Scholar 

  • Fischer JR, Parveen N, Magoun L, Leong JM (2003) Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 100:7307–7312

    PubMed  CrossRef  CAS  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, Van Vugt R, Palmer N, Adams MD, Gocayne J, Venter JC et al (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    PubMed  CrossRef  CAS  Google Scholar 

  • Gilmore RD Jr, Mbow ML (1998) A monoclonal antibody generated by antigen inoculation via tick bite is reactive to the Borrelia burgdorferi Rev protein, a member of the 2.9 gene family locus. Infect Immun 66:980–986

    PubMed  CAS  Google Scholar 

  • Grab DJ, Givens C, Kennedy R (1998) Fibronectin-binding activity in Borrelia burgdorferi. Biochim Biophys Acta 1407:135–145

    PubMed  CAS  Google Scholar 

  • Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, Radolf JD, Rosa PA (2004a) Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 72:5938–5946

    PubMed  CrossRef  CAS  Google Scholar 

  • Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (2004b) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 101:3142–3147

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo BP, Brown EL, Dorward DW, Rosenberg LC, Höök M (1998) Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol 30:711–723

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo BP, Norris SJ, Rosenberg LC, Höök M (1995) Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 63:3467–3472

    PubMed  CAS  Google Scholar 

  • Hallström T, Haupt K, Kraiczy P, Hortschansky P, Wallich R, Skerka C, Zipfel PF (2010) Complement regulator-acquiring surface protein 1 of Borrelia burgdorferi binds to human bone morphogenic protein 2, several extracellular matrix proteins, and plasminogen. J Infect Dis 202:490–498

    PubMed  CrossRef  Google Scholar 

  • Hechemy KE, Samsonoff WA, Mckee M, Guttman JM (1989) Borrelia burgdorferi attachment to mammalian cells. J Infect Dis 159:805–806

    PubMed  CrossRef  CAS  Google Scholar 

  • Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J, Lahdenne P, Seppälä IJ, Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427–8435

    PubMed  CrossRef  CAS  Google Scholar 

  • Isaacs RD (1994) Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest 93:809–819

    PubMed  CrossRef  CAS  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    PubMed  CrossRef  CAS  Google Scholar 

  • Kraiczy P, Skerka C, Brade V, Zipfel PF (2001a) Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun 69:7800–7809

    PubMed  CrossRef  CAS  Google Scholar 

  • Kraiczy P, Skerka C, Kirschfink M, Brade V, Zipfel PF (2001b) Immune evasion of Borrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and factor H. Eur J Immunol 31:1674–1684

    PubMed  CrossRef  CAS  Google Scholar 

  • Lawrenz MB, Hardham JM, Owens RT, Nowakowski J, Steere AC, Wormser GP, Norris SJ (1999) Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J Clin Microbiol 37:3997–4004

    PubMed  CAS  Google Scholar 

  • Leong JM, Morrissey PE, Ortega-Barria E, Pereira ME, Coburn J (1995) Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:874–883

    PubMed  CAS  Google Scholar 

  • Leong JM, Robbins D, Rosenfeld L, Lahiri B, Parveen N (1998a) Structural requirements for glycosaminoglycan recognition by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 66:6045–6048

    PubMed  CAS  Google Scholar 

  • Leong JM, Wang H, Magoun L, Field JA, Morrissey PE, Robbins D, Tatro JB, Coburn J, Parveen N (1998b) Different classes of proteoglycans contribute to the attachment of Borrelia burgdorferi to cultured endothelial and brain cells. Infect Immun 66:994–999

    PubMed  CAS  Google Scholar 

  • Li X, Liu X, Beck DS, Kantor FS, Fikrig E (2006) Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 74:3305–3313

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin T, Gao L, Edmondson DG, Jacobs MB, Philipp MT, Norris SJ (2009) Central role of the holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLoS Pathog 5:e1000679

    PubMed  CrossRef  Google Scholar 

  • Marconi RT, Sung SY, Hughes CA, Carlyon JA (1996) Molecular and evolutionary analyses of a variable series of genes in Borrelia burgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box. J Bacteriol 178:5615–5626

    PubMed  CAS  Google Scholar 

  • McDowell JV, Sung SY, Price G, Marconi RT (2001) Demonstration of the genetic stability and temporal expression of select members of the Lyme disease spirochete OspF protein family during infection in mice. Infect Immun 69:4831–4838

    PubMed  CrossRef  CAS  Google Scholar 

  • McEwan PA, Scott PG, Bishop PN, Bella J (2006) Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol 155:294–305

    PubMed  CrossRef  CAS  Google Scholar 

  • Metts MS, McDowell JV, Theisen M, Hansen PR, Marconi RT (2003) Analysis of the OspE determinants involved in binding of factor H and OspE-targeting antibodies elicited during Borrelia burgdorferi infection in mice. Infect Immun 71:3587–3596

    PubMed  CrossRef  CAS  Google Scholar 

  • Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G (2008) Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4:e1000169

    PubMed  CrossRef  Google Scholar 

  • Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468

    PubMed  CrossRef  CAS  Google Scholar 

  • Pal U, Wang P, Bao F, Yang X, Samanta S, Schoen R, Wormser GP, Schwartz I, Fikrig E (2008) Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis. J Exp Med 205:133–141

    PubMed  CrossRef  CAS  Google Scholar 

  • Parveen N, Caimano M, Radolf JD, Leong JM (2003) Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Mol Microbiol 47:1433–1444

    PubMed  CrossRef  CAS  Google Scholar 

  • Parveen N, Cornell KA, Bono JL, Chamberland C, Rosa P, Leong JM (2006) Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun 74:3016–3020

    PubMed  CrossRef  CAS  Google Scholar 

  • Parveen N, Leong JM (2000) Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:1220–1234

    PubMed  CrossRef  CAS  Google Scholar 

  • Pikas DS, Brown EL, Gurusiddappa S, Lee LY, Xu Y, Höök M (2003) Decorin-binding sites in the adhesin DbpA from Borrelia burgdorferi: a synthetic peptide approach. J Biol Chem 278:30920–30926

    PubMed  CrossRef  CAS  Google Scholar 

  • Prabhakaran S, Liang X, Skare JT, Potts JR, Höök M (2009) A novel fibronectin binding motif in MSCRAMMs targets F3 modules. PLoS One 4:e5412

    PubMed  CrossRef  Google Scholar 

  • Probert WS, Johnson BJ (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003–1015

    PubMed  CrossRef  CAS  Google Scholar 

  • Probert WS, Kim JH, Höök M, Johnson BJB (2001) Mapping the ligand-binding region of the Borrelia burgdorferi fibronectin-binding protein BBK32. Infect Immun 69:4129–4133

    PubMed  CrossRef  CAS  Google Scholar 

  • Raibaud S, Schwarz-Linek U, Kim JH, Jenkins HT, Baines ER, Gurusiddappa S, Höök M, Potts JR (2005) Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. J Biol Chem 280:18803–18809

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    PubMed  CrossRef  CAS  Google Scholar 

  • Saidac DS, Marras SA, Parveen N (2009) Detection and quantification of Lyme spirochetes using sensitive and specific molecular beacon probes. BMC Microbiol 9:43

    PubMed  CrossRef  Google Scholar 

  • Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38:382–388

    PubMed  CAS  Google Scholar 

  • Seidler DG, Dreier R (2008) Decorin and its galactosaminoglycan chain: extracellular regulator of cellular function?. IUBMB Life 60:729–733

    PubMed  CrossRef  CAS  Google Scholar 

  • Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Höök M, Skare JT (2006) Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59:1591–1601

    PubMed  CrossRef  CAS  Google Scholar 

  • Setubal JC, Reis M, Matsunaga J, Haake DA (2006) Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113–121

    PubMed  CrossRef  CAS  Google Scholar 

  • Shi Y, Xu Q, McShan K, Liang FT (2008a) Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 76:1239–1246

    PubMed  CrossRef  CAS  Google Scholar 

  • Shi Y, Xu Q, Seemanaplli SV, McShan K, Liang FT (2008b) Common and unique contributions of decorin-binding proteins A and B to the overall virulence of Borrelia burgdorferi. PLoS One 3:e3340

    PubMed  CrossRef  Google Scholar 

  • Sjöberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30:83–90

    PubMed  CrossRef  Google Scholar 

  • Stevenson B (2002) Borrelia burgdorferi erp (ospE-related) gene sequences remain stable during mammalian infection. Infect Immun 70:5307–5311

    PubMed  CrossRef  CAS  Google Scholar 

  • Sung SY, Lavoie CP, Carlyon JA, Marconi RT (1998) Genetic divergence and evolutionary instability in ospE-related members of the upstream homology box gene family in Borrelia burgdorferi sensu lato complex isolates. Infect Immun 66:4656–4668

    PubMed  CAS  Google Scholar 

  • Szczepanski A, Furie MB, Benach JL, Lane BP, Fleit HB (1990) Interaction between Borrelia burgdorferi and endothelium in vitro. J Clin Invest 85:1637–1647

    PubMed  CrossRef  CAS  Google Scholar 

  • Thomas DD, Comstock LE (1989) Interaction of Lyme disease spirochetes with cultured eukaryotic cells. Infect Immun 57:1324–1326

    PubMed  CAS  Google Scholar 

  • Tilly K, Bestor A, Jewett MW, Rosa P (2007) Rapid clearance of lyme disease spirochetes lacking OspC from skin. Infect Immun 75:1517–1519

    PubMed  CrossRef  CAS  Google Scholar 

  • Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P (2006) Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74:3554–3564

    PubMed  CrossRef  CAS  Google Scholar 

  • Verma A, Brissette CA, Bowman A, Stevenson B (2009) Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 77:4940–4946

    PubMed  CrossRef  CAS  Google Scholar 

  • Wallich R, Pattathu J, Kitiratschky V, Brenner C, Zipfel PF, Brade V, Simon MM, Kraiczy P (2005) Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infect Immun 73:2351–2359

    PubMed  CrossRef  CAS  Google Scholar 

  • Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Höök M, Skare JT (2008) Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76:5694–5705

    PubMed  CrossRef  CAS  Google Scholar 

  • Xu Q, McShan K, Liang FT (2008) Verification and dissection of the ospC operator by using flaB promoter as a reporter in Borrelia burgdorferi. Microb Pathog 45:70–78

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang X, Coleman AS, Anguita J, Pal U (2009) A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity. PLoS Pathog 5:e1000326

    PubMed  CrossRef  Google Scholar 

  • Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648

    PubMed  CrossRef  CAS  Google Scholar 

  • Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello FC (2004) Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 72:3138–3146

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang JR, Norris SJ (1998a) Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 66:3698–3704

    PubMed  CAS  Google Scholar 

  • Zhang JR, Norris SJ (1998b) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. [erratum appears in Infect Immun 1999 67:468]. Infect Immun 66:3689–3697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenifer Coburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Antonara, S., Ristow, L., Coburn, J. (2011). Adhesion Mechanisms of Borrelia burgdorferi . In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_3

Download citation