Skip to main content

Adhesive Mechanisms of Salmonella enterica

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Salmonella enterica is an invasive, facultative intracellular pathogen of animal and man with the ability to colonize various niches in diverse host organisms. The pathogenesis of infections by S. enterica requires adhesion to various host cell surfaces, and a large number of adhesive structures can be found. Depending on the serotype of S. enterica, gene clusters for more than 10 different fimbrial adhesins were identified, with type I fimbriae such as Fim, Lpf (long polar fimbriae), Tafi (thin aggregative fimbriae) or the type IV pili of serotype Typhi. In addition, autotransporter adhesins such as ShdA, MisL and SadA and the type I secreted large repetitive adhesins SiiE and BapA have been identified. Although the functions of many of the various adhesins are not well understood, recent studies show the specific structural and functional properties of Salmonella adhesins and how they act in concert with other virulence determinants. In this chapter, we describe the molecular characteristics of Salmonella adhesins and link these features to their multiple functions in infection biology.

Keywords

  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Adhesion System
  • Adhesive Structure
  • Cystic Fibrosis Transmembrane Conductance Regulator Mutation
  • Salmonella Pathogenicity Island

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 2.1

References

  • Abd El Ghany M, Jansen A, Clare S, Hall L, Pickard D, Kingsley RA, Dougan G (2007) Candidate live, attenuated Salmonella enterica serotype Typhimurium vaccines with reduced fecal shedding are immunogenic and effective oral vaccines. Infect Immun 75:1835–1842

    PubMed  CrossRef  Google Scholar 

  • Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F (1999) Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31:971–982

    PubMed  CrossRef  CAS  Google Scholar 

  • Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    PubMed  CrossRef  CAS  Google Scholar 

  • Bajaj V, Lucas RL, Hwang C, Lee CA (1996) Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714

    PubMed  CrossRef  CAS  Google Scholar 

  • Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO (2005) Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691

    PubMed  CrossRef  CAS  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    PubMed  CrossRef  CAS  Google Scholar 

  • Bäumler AJ, Heffron F (1995) Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J Bacteriol 177:2087–2097

    PubMed  Google Scholar 

  • Bäumler AJ, Tsolis RM, Heffron F (1996) The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci USA 93:279–283

    PubMed  CrossRef  Google Scholar 

  • Blanc-Potard AB, Solomon F, Kayser J, Groisman EA (1999) The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181:998–1004

    PubMed  CAS  Google Scholar 

  • Boddicker JD, Ledeboer NA, Jagnow J, Jones BD, Clegg S (2002) Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255–1265

    PubMed  CrossRef  CAS  Google Scholar 

  • Boyen F, Pasmans F, Donne E, Van Immerseel F, Morgan E, Adriaensen C, Hernalsteens JP, Wallis TS, Ducatelle R, Haesebrouck F (2006) The fibronectin binding protein ShdA is not a prerequisite for long term faecal shedding of Salmonella typhimurium in pigs. Vet Microbiol 115:284–290

    PubMed  CrossRef  CAS  Google Scholar 

  • Chessa D, Dorsey CW, Winter M, Bäumler AJ (2008) Binding specificity of Salmonella plasmid-encoded fimbriae assessed by glycomics. J Biol Chem 283:8118–8124

    PubMed  CrossRef  CAS  Google Scholar 

  • Chessa D, Winter MG, Jakomin M, Bäumler AJ (2009) Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 71:864–875

    PubMed  CrossRef  CAS  Google Scholar 

  • Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178(3):662–667

    PubMed  CAS  Google Scholar 

  • Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ, Kay WW (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175:12–18

    PubMed  CAS  Google Scholar 

  • Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781

    PubMed  CAS  Google Scholar 

  • Craig L, Li J (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18:267–277

    PubMed  CrossRef  CAS  Google Scholar 

  • Crawford RW, Reeve KE, Gunn JS (2010) Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attach to and form biofilms on cholesterol-coated surfaces. J Bacteriol 192:2981–2990

    PubMed  CrossRef  CAS  Google Scholar 

  • Crichton PB, Yakubu DE, Old DC, Clegg S (1989) Immunological and genetical relatedness of type-1 and type-2 fimbriae in salmonellas of serotypes Gallinarum, Pullorum and Typhimurium. J Appl Bacteriol 67:283–291

    PubMed  CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    PubMed  CrossRef  CAS  Google Scholar 

  • Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112

    PubMed  CrossRef  CAS  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161

    PubMed  CrossRef  CAS  Google Scholar 

  • Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Bäumler AJ (2005) Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57:196–211

    PubMed  CrossRef  CAS  Google Scholar 

  • Duguid JP (1959) Fimbriae and adhesive properties in Klebsiella strains. J Gen Microbiol 21:271–286

    PubMed  CAS  Google Scholar 

  • Gerlach RG, Claudio N, Rohde M, Jäckel D, Wagner C, Hensel M (2008) Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 10:2364–2376

    PubMed  CrossRef  CAS  Google Scholar 

  • Gerlach RG, Jäckel D, Geymeier N, Hensel M (2007a) Salmonella pathogenicity island 4-mediated adhesion is coregulated with invasion genes in Salmonella enterica. Infect Immun 75:4697–4709

    PubMed  CrossRef  CAS  Google Scholar 

  • Gerlach RG, Jäckel D, Stecher B, Wagner C, Lupas A, Hardt WD, Hensel M (2007b) Salmonella pathogenicity island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol 9:1834–1850

    PubMed  CrossRef  CAS  Google Scholar 

  • Gerstel U, Römling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3:638–648

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo A, Cao S, Tu L, Chen P, Zhang C, Jia A, Yang W, Liu Z, Chen H, Schifferli DM (2009) FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. Microbiology 155:1623–1633

    PubMed  CrossRef  CAS  Google Scholar 

  • Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566

    PubMed  CrossRef  CAS  Google Scholar 

  • Hancox LS, Yeh KS, Clegg S (1997) Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS Immunol Med Microbiol 19:289–296

    PubMed  CrossRef  CAS  Google Scholar 

  • Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW, Itoh K, Kiyono H, Ohno H (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462:226–230

    PubMed  CrossRef  CAS  Google Scholar 

  • Hernandez Alvarez B, Hartmann MD, Albrecht R, Lupas AN, Zeth K, Linke D (2008) A new expression system for protein crystallization using trimeric coiled-coil adaptors. Protein Eng Des Sel 21:11–18

    PubMed  CrossRef  Google Scholar 

  • Hinsa SM, O’Toole GA (2006) Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology 152:1375–1383

    PubMed  CrossRef  CAS  Google Scholar 

  • Humphries A, Deridder S, Bäumler AJ (2005) Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 73:5329–5338

    PubMed  CrossRef  CAS  Google Scholar 

  • Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J, Adams LG, Tsolis RM, Bäumler AJ (2003) The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48:1357–1376

    PubMed  CrossRef  CAS  Google Scholar 

  • Kingsley RA, Abi Ghanem D, Puebla-Osorio N, Keestra AM, Berghman L, Bäumler AJ (2004a) Fibronectin binding to the Salmonella enterica serotype Typhimurium ShdA autotransporter protein is inhibited by a monoclonal antibody recognizing the A3 repeat. J Bacteriol 186:4931–4939

    PubMed  CrossRef  CAS  Google Scholar 

  • Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S, Papaconstantinopoulou A, Dougan G, Bäumler AJ (2003) Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun 71:629–640

    PubMed  CrossRef  CAS  Google Scholar 

  • Kingsley RA, Keestra AM, de Zoete MR, Bäumler AJ (2004b) The ShdA adhesin binds to the cationic cradle of the fibronectin 13FnIII repeat module: evidence for molecular mimicry of heparin binding. Mol Microbiol 52:345–355

    PubMed  CrossRef  CAS  Google Scholar 

  • Kingsley RA, Santos RL, Keestra AM, Adams LG, Bäumler AJ (2002) Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol 43:895–905

    PubMed  CrossRef  CAS  Google Scholar 

  • Kingsley RA, van Amsterdam K, Kramer N, Bäumler AJ (2000) The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect Immun 68:2720–2727

    PubMed  CrossRef  CAS  Google Scholar 

  • Kisiela D, Laskowska A, Sapeta A, Kuczkowski M, Wieliczko A, Ugorski M (2006) Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152:1337–1346

    PubMed  CrossRef  CAS  Google Scholar 

  • Kisiela D, Sapeta A, Kuczkowski M, Stefaniak T, Wieliczko A, Ugorski M (2005) Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190

    PubMed  CrossRef  CAS  Google Scholar 

  • Kiss T, Morgan E, Nagy G (2007) Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett 275:153–159

    PubMed  CrossRef  Google Scholar 

  • Korhonen TK, Lounatmaa K, Ranta H, Kuusi N (1980) Characterization of type 1 pili of Salmonella typhimurium LT2. J Bacteriol 144:800–805

    PubMed  CAS  Google Scholar 

  • Lara-Tejero M, Galan JE (2009) Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642

    PubMed  CrossRef  CAS  Google Scholar 

  • Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339

    PubMed  CrossRef  CAS  Google Scholar 

  • Ledeboer NA, Frye JG, McClelland M, Jones BD (2006) Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74:3156–3169

    PubMed  CrossRef  CAS  Google Scholar 

  • Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    PubMed  CrossRef  CAS  Google Scholar 

  • Luria-Perez R, Cedillo-Barron L, Santos-Argumedo L, Ortiz-Navarrete VF, Ocana-Mondragon A, Gonzalez-Bonilla CR (2007) A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 25:5071–5085

    PubMed  CrossRef  CAS  Google Scholar 

  • Lyczak JB, Pier GB (2002) Salmonella enterica serovar typhi modulates cell surface expression of its receptor, the cystic fibrosis transmembrane conductance regulator, on the intestinal epithelium. Infect Immun 70:6416–6423

    PubMed  CrossRef  CAS  Google Scholar 

  • Main-Hester KL, Colpitts KM, Thomas GA, Fang FC, Libby SJ (2008) Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 76:1024–1035

    PubMed  CrossRef  CAS  Google Scholar 

  • McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856

    PubMed  CrossRef  CAS  Google Scholar 

  • Morgan E, Bowen AJ, Carnell SC, Wallis TS, Stevens MP (2007) SiiE is secreted by the Salmonella enterica serovar Typhimurium pathogenicity island 4-encoded secretion system and contributes to intestinal colonization in cattle. Infect Immun 75:1524–1533

    PubMed  CrossRef  CAS  Google Scholar 

  • Morgan E, Campbell JD, Rowe SC, Bispham J, Stevens MP, Bowen AJ, Barrow PA, Maskell DJ, Wallis TS (2004) Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54:994–1010

    PubMed  CrossRef  CAS  Google Scholar 

  • Nevola JJ, Stocker A, Laux DC, Cohen PS (1985) Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infet Immun 50:152–159

    CAS  Google Scholar 

  • Nicaud JM, Mackman N, Gray L, Holland IB (1985) Characterisation of HlyC and mechanism of activation and secretion of haemolysin from E. coli 2001. FEBS Lett 187:339–344

    PubMed  CrossRef  CAS  Google Scholar 

  • Nicholson TL, Bäumler AJ (2001) Salmonella enterica serotype typhimurium elicits cross-immunity against a Salmonella enterica serotype enteritidis strain expressing LP fimbriae from the lac promoter. Infect Immun 69:204–212

    PubMed  CrossRef  CAS  Google Scholar 

  • Norris TL, Bäumler AJ (1999) Phase variation of the lpf operon is a mechanism to evade cross-immunity between Salmonella serotypes. Proc Natl Acad Sci USA 96:13393–13398

    PubMed  CrossRef  CAS  Google Scholar 

  • Norris TL, Kingsley RA, Bäumler AJ (1998) Expression and transcriptional control of the Salmonella typhimurium Ipf fimbrial operon by phase variation. Mol Microbiol 29:311–320

    PubMed  CrossRef  CAS  Google Scholar 

  • Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S (1993) The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536

    PubMed  CrossRef  CAS  Google Scholar 

  • Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    PubMed  CrossRef  CAS  Google Scholar 

  • Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852

    PubMed  CrossRef  CAS  Google Scholar 

  • Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ, Colledge WH (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79–82

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramos HC, Rumbo M, Sirard JC (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12:509–517

    PubMed  CrossRef  CAS  Google Scholar 

  • Römling U, Bian Z, Hammar M, Sierralta WD, Normark S (1998a) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731

    PubMed  Google Scholar 

  • Römling U, Rohde M, Olsen A, Normark S, Reinkoster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23

    PubMed  CrossRef  Google Scholar 

  • Römling U, Sierralta WD, Eriksson K, Normark S (1998b) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264

    PubMed  CrossRef  Google Scholar 

  • Ruiz-Olvera P, Ruiz-Perez F, Sepulveda NV, Santiago-Machuca A, Maldonado-Rodriguez R, Garcia-Elorriaga G, Gonzalez-Bonilla C (2003) Display and release of the Plasmodium falciparum circumsporozoite protein using the autotransporter MisL of Salmonella enterica. Plasmid 50:12–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruiz-Perez F, Leon-Kempis R, Santiago-Machuca A, Ortega-Pierres G, Barry E, Levine M, Gonzalez-Bonilla C (2002) Expression of the Plasmodium falciparum immunodominant epitope (NANP)(4) on the surface of Salmonella enterica using the autotransporter MisL. Infect Immun 70:3611–3620

    PubMed  CrossRef  CAS  Google Scholar 

  • Saini S, Rao CV (2010) SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 192:2459–2462

    PubMed  CrossRef  CAS  Google Scholar 

  • Soto GE, Hultgren SJ (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071

    PubMed  CAS  Google Scholar 

  • Sukupolvi S, Lorenz RG, Gordon JI, Bian Z, Pfeifer JD, Normark SJ, Rhen M (1997) Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 65:5320–5325

    PubMed  CAS  Google Scholar 

  • Tam CK, Morris C, Hackett J (2006) The Salmonella enterica serovar Typhi type IVB self-association pili are detached from the bacterial cell by the PilV minor pilus proteins. Infect Immun 74:5414–5418

    PubMed  CrossRef  CAS  Google Scholar 

  • Thankavel K, Shah AH, Cohen MS, Ikeda T, Lorenz RG, Curtiss R 3rd, Abraham SN (1999) Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274:5797–5809

    PubMed  CrossRef  CAS  Google Scholar 

  • Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, Simmonds M, Stevens K, Maloy S, Parkhill J, Dougan G, Baumler AJ (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsui IS, Yip CM, Hackett J, Morris C (2003) The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect Immun 71:6049–6050

    PubMed  CrossRef  CAS  Google Scholar 

  • Tükel C, Akcelik M, de Jong MF, Simsek O, Tsolis RM, Bäumler AJ (2007) MarT activates expression of the MisL autotransporter protein of Salmonella enterica serotype Typhimurium. J Bacteriol 189:3922–3926

    PubMed  CrossRef  Google Scholar 

  • van der Velden AW, Bäumler AJ, Tsolis RM, Heffron F (1998) Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66:2803–2808

    PubMed  Google Scholar 

  • Wall D, Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32:1–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Bäumler AJ (2005) The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73:3358–3366

    PubMed  CrossRef  CAS  Google Scholar 

  • White AP, Collinson SK, Banser PA, Gibson DL, Paetzel M, Strynadka NC, Kay WW (2001) Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. J Mol Biol 311:735–749

    PubMed  CrossRef  CAS  Google Scholar 

  • White AP, Gibson DL, Collinson SK, Banser PA, Kay WW (2003) Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185:5398–5407

    PubMed  CrossRef  CAS  Google Scholar 

  • Wolfgang M, van Putten JP, Hayes SF, Dorward D, Koomey M (2000) Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19:6408–6418

    PubMed  CrossRef  CAS  Google Scholar 

  • Wong KK, McClelland M, Stillwell LC, Sisk EC, Thurston SJ, Saffer JD (1998) Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun 66:3365–3371

    PubMed  CAS  Google Scholar 

  • Xu XF, Tan YW, Lam L, Hackett J, Zhang M, Mok YK (2004) NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus. J Biol Chem 279:31599–31605

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang XL, Morris C, Hackett J (1997) Molecular cloning, nucleotide sequence, and function of a site-specific recombinase encoded in the major “pathogenicity island” of Salmonella typhi. Gene 202:139–146

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C (2000) Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68:3067–3073

    PubMed  CrossRef  CAS  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

Work in our laboratory was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) and the Staedtler-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wagner, C., Hensel, M. (2011). Adhesive Mechanisms of Salmonella enterica . In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_2

Download citation