Skip to main content

Atomic Force Microscopy to Study Intermolecular Forces and Bonds Associated with Bacteria

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Atomic force microscopy (AFM) operates on a very different principle than other forms of microscopy, such as optical microscopy or electron microscopy. The key component of an AFM is a cantilever that bends in response to forces that it experiences as it touches another surface. Forces as small as a few picoNewtons can be detected and probed with AFM. AFM has become very useful in biological sciences because it can be used on living cells that are immersed in water. AFM is particularly useful when the cantilever is modified with chemical groups (e.g. amine or carboxylic groups), small beads (e.g. glass or latex), or even a bacterium. This chapter describes how AFM can be used to measure forces and bonds between a bacterium and another surface. This paper also provides an example of the use of AFM on Staphylococcus aureus, a Gram-positive bacterium that is often associated with biofilms in humans.

Keywords

  • Adhesion
  • AFM
  • Bacterium
  • Bond
  • Force

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_18
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4
Fig. 18.5
Fig. 18.6

References

  • Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A 8:3386–3396

    CrossRef  CAS  Google Scholar 

  • Bell GI (1978) Models for specific adhesion of cells to cells. Science 200:618–627

    PubMed  CrossRef  CAS  Google Scholar 

  • Bemis JE, Akhremitchev BB, Walker GC (1999) Single polymer chain elongation by atomic force microscopy. Langmuir 15:2799–2805

    CrossRef  CAS  Google Scholar 

  • Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    PubMed  CrossRef  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    PubMed  CrossRef  Google Scholar 

  • Butt HJ, Kappl M, Mueller H, Raiteri R, Meyer W, Ruhe J (1999) Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15:2559–2565

    CrossRef  CAS  Google Scholar 

  • Camesano TA, Logan BE (2000) Probing bacterial electrosteric interactions using atomic force microscopy. Environ. Sci. Technol. 34:3354–3362

    CrossRef  CAS  Google Scholar 

  • Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–44

    CrossRef  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    PubMed  CrossRef  CAS  Google Scholar 

  • Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    CrossRef  CAS  Google Scholar 

  • Craig VSJ, Neto C (2001) In situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall. Langmuir 17:6018–6022

    CrossRef  CAS  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    CrossRef  CAS  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1992) Measurements of forces in liquids using a force microscope. Langmuir 8:1831–1836

    CrossRef  CAS  Google Scholar 

  • Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89:4252–4260

    PubMed  CrossRef  CAS  Google Scholar 

  • Dugdale TM, Dagastine R, Chiovitti A, Wetherbee R (2006) Diatom adhesive mucilage contains distinct supramolecular assemblies of a single modular protein. Biophys J 90:2987–2993

    PubMed  CrossRef  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams R (1995) Particle deposition & aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Evans E (2001) Probing the relation between force – lifetime – and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    PubMed  CrossRef  CAS  Google Scholar 

  • Flory PJ (1989) Statistical mechanics of chain molecules. Hanser Publisher, Munich, Germany

    Google Scholar 

  • Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    PubMed  CrossRef  CAS  Google Scholar 

  • Fröman G, Switalski LM, Speziale P, Höök M (1987) Isolation and characterization of a fibronectin receptor from Staphylococcus aureus. J Biol Chem 262:6564–6571

    PubMed  Google Scholar 

  • Greene C, McDevitt D, Francois P, Vaudaux PE, Lew DP, Foster TJ (1995) Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol Microbiol 17:1143–1152

    PubMed  CrossRef  CAS  Google Scholar 

  • Hanley W, McCarty O, Jadhav S, Tseng Y, Wirtz D, Konstantopoulos K (2003) Single molecule characterization of P-selectin/ligand binding. J Biol Chem 278:10556–10561

    PubMed  CrossRef  CAS  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    PubMed  CrossRef  CAS  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 153:25–38

    PubMed  CrossRef  Google Scholar 

  • Huff S, Matsuka YV, McGavin MJ, Ingham KC (1994) Interaction of N-Terminal fragments of fibronectin with synthetic and recombinant-D motifs from its binding-protein on Staphylococcus aureus studied using fluorescence anisotropy. J Biol Chem 269:15563–15570

    PubMed  CAS  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    CrossRef  CAS  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Israelachvili JN, McGuiggan PM (1988) Forces between surfaces in liquids. Science 241:795–800

    PubMed  CrossRef  CAS  Google Scholar 

  • Jericho SK, Jericho MH, Hubbard T, Kujath M (2004) Micro-electro-mechanical systems microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75:1280–1282

    CrossRef  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116

    PubMed  CrossRef  CAS  Google Scholar 

  • Kendall TA, Lower SK (2004) Forces between minerals and biological surfaces in aqueous solution. Adv Agronom 82:1–54

    CrossRef  CAS  Google Scholar 

  • Klein C, Hurlbut CS (1985) Manual of mineralogy. Wiley, New York, NY

    Google Scholar 

  • Leckband D, Israelachvili JN (2001) Intermolecular forces in biology. Quart Rev Biophys 34:105–267

    CrossRef  CAS  Google Scholar 

  • Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    PubMed  CrossRef  CAS  Google Scholar 

  • Lower SK, Hochella MF, Beveridge T (2001a) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 292:1360–1363

    PubMed  CrossRef  CAS  Google Scholar 

  • Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK (2007) Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol 189:4944–4952

    PubMed  CrossRef  CAS  Google Scholar 

  • Lower SK, Tadanier CJ, Hochella MF (2000) Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochim Cosmochim Acta 64:3133–3139

    CrossRef  CAS  Google Scholar 

  • Lower SK, Tadanier CJ, Hochella MF (2001b) Dynamics of the mineral-microbe interface: use of biological force microscopy in biogeochemistry and geomicrobiology. Geomicrobiol J 18:63–76

    CrossRef  CAS  Google Scholar 

  • Lower SK, Tadanier CJ, Hochella MF, Berry DF, Potts M (1999) The bacteria-mineral interface: probing nanoscale forces with biological force microscopy. Geol Soc Am Abstr Prog 31(7):A394

    Google Scholar 

  • Lower BH, Yongsunthon R, Shi L, Wildling L, Gruber HJ, Wigginton NS, Reardon CL, Pinchuk GE, Droubay TC, Boily JF, Lower SK (2009) Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:2931–2935

    PubMed  CrossRef  CAS  Google Scholar 

  • Lower BH, Yongsunthon R, Vellano FP, Lower SK (2005) Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J Bacteriol 187:2127–2137

    PubMed  CrossRef  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Mueller H, Butt HJ, Bamberg E (1999) Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophys J 76:1072–1079

    PubMed  CrossRef  CAS  Google Scholar 

  • Müller DJ, Baumeister W, Engel A (1999) Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc Natl Acad Sci USA 96:13170–13174

    PubMed  CrossRef  Google Scholar 

  • Noy A, Vezenov DV, Lieber CM (1997) Chemical force microscopy. Annu Rev Mater Sci 27:381–421

    CrossRef  CAS  Google Scholar 

  • Oberdörfer Y, Fuchs H, Janshoff A (2000) Conformational analysis of native fibronectin by means of force spectroscopy. Langmuir 16:9955–9958

    CrossRef  Google Scholar 

  • Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM (1999) Single protein misfolding events captured by atomic force microscopy. Nat Struct Biol 6:1025–1028

    PubMed  CrossRef  CAS  Google Scholar 

  • Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186:4427–4440

    PubMed  CrossRef  CAS  Google Scholar 

  • Prince JL, Dickinson RB (2003) Kinetics and forces of adhesion for a pair of capsular/unencapsulated Staphylococcus mutant strains. Langmuir 19:154–159

    CrossRef  CAS  Google Scholar 

  • Razatos A, Ong Y-L, Sharma MM, Georgiou G (1998) Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci USA 95:11059–11064

    PubMed  CrossRef  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    PubMed  CrossRef  CAS  Google Scholar 

  • Schwarz-Linek U, Höök M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641

    PubMed  CrossRef  CAS  Google Scholar 

  • Senden TJ, Ducker WA (1994) Experimental determination of spring constants in atomic-force microscopy. Langmuir 10:1003–1004

    CrossRef  Google Scholar 

  • Taylor ES, Lower SK (2008) Thickness and surface density of extracellular polymers on Acidithiobacillus ferrooxidans. Appl Environ Microbiol 74:309–311

    PubMed  CrossRef  CAS  Google Scholar 

  • Tortonese M (1997) Cantilevers and tips for atomic force microscopy. IEEE Eng Med Biol Mag 16:2833

    CrossRef  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312

    PubMed  CrossRef  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    PubMed  CrossRef  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    PubMed  CrossRef  CAS  Google Scholar 

  • Yongsunthon R, Lower SK (2006) Force measurements between a bacterium and another surface in situ. Adv Appl Microbiol 58:97–124

    PubMed  CrossRef  Google Scholar 

  • Ziebuhr W, Heilmann C, Götz F, Meyer P, Wilms K, Straube B, Hacker J (1997) Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Lower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lower, S.K. (2011). Atomic Force Microscopy to Study Intermolecular Forces and Bonds Associated with Bacteria. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_18

Download citation