Skip to main content

EM Reconstruction of Adhesins: Future Prospects

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Both Gram-negative and Gram-positive pathogenic bacteria present a remarkable number of surface-exposed organelles and secreted toxins that allow them to control the primary stages of infection, bacterial attachment to host cell receptors and colonization. The mediators of these processes, called adhesins, form a heterogeneous group that varies in architecture, domain content and mechanism of binding. A full understanding of how adhesins mediate cellular adhesion and colonization requires quantitative functional assays to evaluate the strength of the binding interactions, as well as determination of the high-resolution three-dimensional structures of the molecules to provide the atomic details of the interactions. The combination of classical imaging techniques like X-ray crystallography and Nuclear Magnetic Resonance (NMR) with the emerging technique of single-particle electron cryomicroscopy has become a tremendously helpful tool to understand the three-dimensional structure at near atomic-level resolution of newly discovered adhesins and their complexes. A detailed study of the structure of these molecules, both isolated and expressed on bacterial surface is a fundamental requirement for understanding the adhesion mechanism to host cells. This chapter will focus on the structure determination of such surface-exposed protein structures in both Gram-negative and Gram-positive bacterial adhesins.

Keywords

  • Neisseria Gonorrhoeae
  • Pilus Shaft
  • Macromolecular Assembly
  • Pilus Assembly
  • Pilin Subunit

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-0940-9_23

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_17
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3

References

  • Akeda Y, Galan JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915

    PubMed  CrossRef  CAS  Google Scholar 

  • Amano A (2003) Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol 74:90–96

    PubMed  CrossRef  CAS  Google Scholar 

  • Bann JG, Frieden C (2004) Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Biochemistry 43:13775–13786

    PubMed  CrossRef  CAS  Google Scholar 

  • Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B (2006) A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103:2857–2862

    PubMed  CrossRef  CAS  Google Scholar 

  • Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A (2001) Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secretion. Mol Microbiol 39:652–663

    PubMed  CrossRef  CAS  Google Scholar 

  • Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066

    PubMed  CrossRef  CAS  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825

    PubMed  CrossRef  CAS  Google Scholar 

  • Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378

    PubMed  CrossRef  CAS  Google Scholar 

  • Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M, Forest KT, Tainer JA (2003) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150

    PubMed  CrossRef  CAS  Google Scholar 

  • Craig L, Volkmann N, Arvai AS, Pique ME, Yeager M, Egelman EH, Tainer JA (2006) Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23:651–662

    PubMed  CrossRef  CAS  Google Scholar 

  • Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, Booy F, Picking WD, Picking WL, Blocker AJ, Lea SM (2006) Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci USA 103:12529–12533

    PubMed  CrossRef  CAS  Google Scholar 

  • Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS (2004) The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–306

    PubMed  CAS  Google Scholar 

  • Duguid JP, Campbell I (1969) Antigens of the type I fimbriae of Salmonella and other Enterobacteria. J Med Microbiol 2:535–553

    PubMed  CrossRef  CAS  Google Scholar 

  • Duguid JP, Smith IW, Dempster G, Edmund SPN (1955) Non-flagellar filamentous appendages (“fimbriae”) and haemagglutinating activity in Bacterium coli. J Path Bact 70:335–348

    PubMed  CrossRef  CAS  Google Scholar 

  • Egelman EH (2000) A Robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    PubMed  CrossRef  CAS  Google Scholar 

  • Fronzes R, Remaut H, Waksman G (2008) Architectures and biogenesis of non-flagellar protein appendages in gram-negative bacteria. EMBO J 27:2271–2280

    PubMed  CrossRef  CAS  Google Scholar 

  • Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Häner M, Taschner N, Burkhard P, Aebi U, Müller SA (2002) Exploring the 3D molecular architecture of Escherichia coli type I pili. J Mol Biol 323:845–857

    PubMed  CrossRef  CAS  Google Scholar 

  • Hilleringmann M, Ringler P, Müller SA, De Angelis G, Rappuoli R, Ferlenghi I, Engel A (2009) Molecular architecture of Streptococcus pneumoniae TIGR4 pili. EMBO J 28:3921–3930

    PubMed  CrossRef  CAS  Google Scholar 

  • Houwink AL, Iterson W (1950) Electron microscopical observations on bacterial cytology. II. A study on flagellation. Biochim Biophys Acta 5:10–44

    PubMed  CrossRef  CAS  Google Scholar 

  • Hung DL, Knight SD, Woods RM, Pinkner JS, Hultgren SJ (1996) Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805

    PubMed  CAS  Google Scholar 

  • Jameson MW, Jenkinson HF, Parnell K, Handley PS (1995) Polypeptides associated with tufts of cell-surface fibrils in an oral Streptococcus. Microbiology 141:2729–2738

    PubMed  CrossRef  CAS  Google Scholar 

  • Jones CH, Pinkner JS, Roth R, Heuser J, Nicholes AV, Abraham SN, Hultgren SJ (1995) FimH adhesin of type I pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085

    PubMed  CrossRef  CAS  Google Scholar 

  • Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884

    PubMed  CAS  Google Scholar 

  • Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G (1998) A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176

    PubMed  CrossRef  CAS  Google Scholar 

  • Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE, Aizawa SI (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuehn MJ, Jacob-Dubuisson F, Dodson K, Slonim L, Striker R, Hultgren SJ (1994) Genetic, biochemical, and structural studies of biogenesis of adhesive pili in bacteria. Methods Enzymol 236:282–306

    PubMed  CrossRef  CAS  Google Scholar 

  • Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, Taddei AR, Mora M, Rappuoli R, Grandi G, Telford JL (2005) Genome analysis reveals pili in Group B Streptococcus. Science 309:105

    PubMed  CrossRef  CAS  Google Scholar 

  • Li CM, Brown I, Mansfield J, Steven C, Boureau T, Romantschuk M, Taira S (2002) The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation. EMBO J 21:1909–1915

    PubMed  CrossRef  CAS  Google Scholar 

  • Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galan JE (2006) Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640

    PubMed  CrossRef  CAS  Google Scholar 

  • Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type I pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812

    PubMed  CrossRef  CAS  Google Scholar 

  • McNab R, Forbes H, Handley PS, Loach DM, Tannock GW, Jenkinson HF (1999) Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol 181:3087–3095

    PubMed  CAS  Google Scholar 

  • Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AGO, Maggi T, Taddei AR, Grandi G, Telford JL (2005) Group A Streptococcus produce piluslike structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA 102:15641–15646

    PubMed  CrossRef  CAS  Google Scholar 

  • Mu XQ, Bullitt E (2006) Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci USA 103:9861–9866

    PubMed  CrossRef  CAS  Google Scholar 

  • Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR (2005) The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676

    PubMed  CrossRef  CAS  Google Scholar 

  • Müller SA, Pozidis C, Stone R, Meesters C, Chami M, Engel A, Economou A, Stahlberg H (2006) Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol Microbiol 61:119–125

    PubMed  CrossRef  Google Scholar 

  • Olsén A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    PubMed  CrossRef  Google Scholar 

  • Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA (1995) Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378:32–38

    PubMed  CrossRef  CAS  Google Scholar 

  • Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk M, He SY (1997) Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 94:3459–3464

    PubMed  CrossRef  CAS  Google Scholar 

  • Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, Taddei A, Santi I, Ghezzo C, Brettoni C, Buccato S, Margarit I, Grandi G, Telford JL (2006) Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol 61:126–141

    PubMed  CrossRef  CAS  Google Scholar 

  • Salih O, Remaut H, Waksman G, Orlova EV (2008) Structural analysis of the Saf Pilus by electron microscopy and image processing. J Mol Biol 379:174–187

    PubMed  CrossRef  CAS  Google Scholar 

  • Sauer F, Fütterer K, Pinkner JS, Dodson K, Hultgren SJ, Waksman G (1999) Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061

    PubMed  CrossRef  CAS  Google Scholar 

  • Sauer FG, Remaut H, Hultgren SJ, Waksman G (2004) Fiber assembly by the chaperone–usher pathway. Biochim Biophys Acta 1694:259–267

    PubMed  CrossRef  CAS  Google Scholar 

  • Saulino ET, Bullitt E, Hultgren SJ (2000) Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci USA 97:9240–9245

    PubMed  CrossRef  CAS  Google Scholar 

  • Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, Mechtler K, Galán JE, Marlovits TC (2010) Topology and organization of the Salmonella typhimurium Type III secretion needle complex components. PLoS Pathog 6:e1000824

    PubMed  CrossRef  Google Scholar 

  • Schweizer F, Jiao H, Hindsgaul O, Wong WY, Irvin RT (1998) Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor beta-D-GalNAc(1->4) beta-D-Gal analogs. Can J Microbiol 44:307–311

    PubMed  CAS  Google Scholar 

  • Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 98:11638–11643

    PubMed  CrossRef  CAS  Google Scholar 

  • Strom MS, Lory S (1993) Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596

    PubMed  CrossRef  CAS  Google Scholar 

  • Sung M, Fleming K, Chen HA, Matthews S (2001) The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2:621–627

    PubMed  CrossRef  CAS  Google Scholar 

  • Tamano K, Aizawa S, Katayama E, Nonaka T, Imajoh-Ohmi S, Kuwae A, Nagai S, Sasakawa C (2000) Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J 19:3876–3887

    PubMed  CrossRef  CAS  Google Scholar 

  • Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in gram-positive pathogens. Nat Rev Microbiol 4:509–519

    PubMed  CrossRef  CAS  Google Scholar 

  • Thanassi DG, Saulino ET, Lombardo MJ, Roth R, Heuser J, Hultgren SJ (1998) The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci USA 95:3146–3151

    PubMed  CrossRef  CAS  Google Scholar 

  • Thanassi DG, Stathopoulos C, Dodson K, Lauer P (2005) Genome analysis reveals pili in group B Streptococcus. Science 309:105

    CrossRef  Google Scholar 

  • Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell wall envelope of gram-positive bacteria. Biochim Biophys Acta 1694:269–278

    PubMed  CrossRef  CAS  Google Scholar 

  • Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438

    PubMed  CrossRef  CAS  Google Scholar 

  • Willcox MD, Drucker DB (1989) Surface structures, co-aggregation and adherence phenomena of Streptococcus oralis and related species. Microbios 59:19–29

    PubMed  CAS  Google Scholar 

  • Woestyn S, Allaoui A, Wattiau P, Cornelis GR (1994) YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol 176:1561–1569

    PubMed  CAS  Google Scholar 

  • Wu H, Fives-Taylor PM (2001) Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Biol Med 12:101–115

    PubMed  CrossRef  CAS  Google Scholar 

  • Yanagawa R, Otsuki K (1970) Some properties of the pili of Corynebacterium renale. J Bacteriol 101:1063–1069

    PubMed  CAS  Google Scholar 

  • Yanagawa R, Otsuki K, Tokui T (1968) Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn Vet Res 16:31–37

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferlenghi Ilaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ilaria, F., Giusti, F. (2011). EM Reconstruction of Adhesins: Future Prospects. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_17

Download citation