Skip to main content

The Application of NMR Techniques to Bacterial Adhesins

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

Abstract Extracellular adhesins frequently compose large, highly-ordered structural assemblies that project away from the bacterial surface. These assemblies, known as pili or fimbriae, are rod-like polymeric structures that in some cases can extend up to several micrometers from the cell surface. Because these adhesin structures are critical to bacterial colonization of host cell surfaces, there is an incentive to understand their structure, assembly and mechanism of host cell attachment. Various methods in Nuclear Magnetic Resonance (NMR) spectroscopy have been used to address these topics, yielding structural information at the atomic level. Also, new methods in solid-state NMR spectroscopy have thus far been under-utilized in the study of large adhesin structures and offer a powerful approach to overcoming problems with crystallization to better understand the structures of these complexes. The following is a brief overview of the contributions of NMR to the study of bacterial adhesins with an emphasis on the future potential of solid-state NMR.

Keywords

  • Nuclear Magnetic Resonance
  • Nuclear Magnetic Resonance Spectroscopy
  • Magic Angle Spinning
  • Nuclear Magnetic Resonance Study
  • Nuclear Magnetic Resonance Technique

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 15.1

References

  • Alphonse S, Durand E, Douzi B, Waegele B, Darbon H, Filloux A, Voulhoux R, Bernard C (2009) Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J Struct Biol 169:75–80

    PubMed  CrossRef  Google Scholar 

  • Anderson KL, Billington J, Pettigrew D, Cota E, Simpson P, Roversi P, Chen HA, Urvil P, du Merle L, Barlow PN, Medof ME, Smith RA, Nowicki B, Le Bouguénec C, Lea SM, Matthews S (2004) An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15:647–657

    PubMed  CrossRef  CAS  Google Scholar 

  • Audette GF, Irvin RT, Hazes B (2004) Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry 43:11427–11435

    PubMed  CrossRef  CAS  Google Scholar 

  • Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter JM, Riek R, Saupe SJ (2003) Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081

    PubMed  CrossRef  CAS  Google Scholar 

  • Barnhart MM, Pinkner JS, Soto GE, Sauer FG, Langermann S, Waksman G, Frieden C, Hultgren SJ (2000) PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97:7709–7714

    PubMed  CrossRef  CAS  Google Scholar 

  • Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, Matthews S (2000) Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO J 19:2452–2464

    PubMed  CrossRef  CAS  Google Scholar 

  • Baxa U, Wickner RB, Steven AC, Anderson DE, Marekov LN, Yau WM, Tycko R (2007) Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46:13149–13162

    PubMed  CrossRef  CAS  Google Scholar 

  • Castellani F, van Rossum BJ, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42:11476–11483

    PubMed  CrossRef  CAS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420: 98–102

    PubMed  CrossRef  CAS  Google Scholar 

  • Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066

    PubMed  CrossRef  CAS  Google Scholar 

  • Cota E, Jones C, Simpson P, Altroff H, Anderson KL, du Merle L, Guignot J, Servin A, Le Bouguénec C, Mardon H, Matthews S (2006) The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62:356–366

    PubMed  CrossRef  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    PubMed  CrossRef  CAS  Google Scholar 

  • Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M, Forest KT, Tainer JA (2003) Type IV pilin structure and assembly: x-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150

    PubMed  CrossRef  CAS  Google Scholar 

  • Epstein EA, Chapman MR (2008) Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell Microbiol 10:1413–1420

    PubMed  CrossRef  CAS  Google Scholar 

  • Forest KT (2005) Structure and assembly of type IV pilins. In: Waksman G, Caparon M, Hultgren S (eds) Structural biology of bacterial pathogenesis. ASM Press, Washington, DC, pp 81–100

    Google Scholar 

  • Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32:217–224

    PubMed  CrossRef  CAS  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    PubMed  CrossRef  CAS  Google Scholar 

  • Golovanov AP, Balasingham S, Tzitzilonis C, Goult BT, Lian LY, Homberset H, Tonjum T, Derrick JP (2006a) Assignment of 1H, 13C, and 15N resonances for the PilP pilot protein from Neisseria meningitidis. J Biomol NMR 36(Suppl 1):68

    PubMed  CrossRef  Google Scholar 

  • Golovanov AP, Balasingham S, Tzitzilonis C, Goult BT, Lian LY, Homberset H, Tonjum T, Derrick JP (2006b) The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new β-sandwich fold. J Mol Biol 364: 186–195

    PubMed  CrossRef  CAS  Google Scholar 

  • Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wüthrich K (2008) NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. J Mol Biol 375:752–763

    PubMed  CrossRef  CAS  Google Scholar 

  • Gossert AD, Hiller S, Fiorito F, Wüthrich K (2007) NMR assignment of the E. coli type 1 pilus protein FimF. J Biomol NMR 38:195

    PubMed  CrossRef  CAS  Google Scholar 

  • Hammer ND, Schmidt JC, Chapman MR (2007) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA 104: 12494–12499

    PubMed  CrossRef  CAS  Google Scholar 

  • Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT (2000) Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017

    PubMed  CrossRef  CAS  Google Scholar 

  • Hedenstrom M, Emtenäs H, Pemberton N, Aberg V, Hultgren SJ, Pinkner JS, Tegman V, Almqvist F, Sethson I, Kihlberg J (2005) NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly. Org Biomol Chem 3:4193–4200

    PubMed  CrossRef  Google Scholar 

  • Keizer DW, Slupsky CM, Kalisiak M, Campbell AP, Crump MP, Sastry PA, Hazes B, Irvin RT, Sykes BD (2001) Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem 276:24186–24193

    PubMed  CrossRef  CAS  Google Scholar 

  • Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, Matthews S (1999) Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6:313–318

    PubMed  CrossRef  CAS  Google Scholar 

  • Korotkova N, Cota E, Lebedin Y, Monpouet S, Guignot J, Servin AL, Matthews S, Moseley SL (2006) A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J Biol Chem 281:29120–29130

    PubMed  CrossRef  CAS  Google Scholar 

  • Korotkova N, Yang Y, Le Trong I, Cota E, Demeler B, Marchant J, Thomas WE, Stenkamp RE, Moseley SL, Matthews S (2008) Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol Microbiol 67:420–434

    PubMed  CrossRef  CAS  Google Scholar 

  • Korukottu J, Schneider R, Vijayan V, Lange A, Pongs O, Becker S, Baldus M, Zweckstetter M (2008) High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. PLoS One 3:e2359

    PubMed  CrossRef  Google Scholar 

  • Li YF, Poole S, Nishio K, Jang K, Rasulova F, McVeigh A, Savarino SJ, Xia D, Bullitt E (2009) Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 106:10793–10798

    PubMed  CrossRef  CAS  Google Scholar 

  • Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Böckmann A (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589

    PubMed  CrossRef  CAS  Google Scholar 

  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    PubMed  CrossRef  CAS  Google Scholar 

  • Mu XQ, Bullitt E (2006) Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci USA 103:9861–9866

    PubMed  CrossRef  CAS  Google Scholar 

  • Mu XQ, Jiang ZG, Bullitt E (2005) Localization of a critical interface for helical rod formation of bacterial adhesion P-pili. J Mol Biol 346:13–20

    PubMed  CrossRef  CAS  Google Scholar 

  • Mu XQ, Savarino SJ, Bullitt E (2008) The three-dimensional structure of CFA/I adhesion pili: traveler’s diarrhea bacteria hang on by a spring. J Mol Biol 376:614–620

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishiyama M, Horst R, Eidam O, Herrmann T, Ignatov O, Vetsch M, Bettendorff P, Jelesarov I, Grütter MG, Wüthrich K, Glockshuber R, Capitani G (2005) Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 24: 2075–2086

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishiyama M, Vetsch M, Puorger C, Jelesarov I, Glockshuber R (2003) Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J Mol Biol 330:513–525

    PubMed  CrossRef  CAS  Google Scholar 

  • Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA (1995) Structure of the fibre-forming protein pilin at 26 A resolution. Nature 378:32–38

    PubMed  CrossRef  CAS  Google Scholar 

  • Pellecchia M, Guntert P, Glockshuber R, Wüthrich K (1998) NMR solution structure of the periplasmic chaperone FimC. Nat Struct Biol 5:885–890

    PubMed  CrossRef  CAS  Google Scholar 

  • Pellecchia M, Sebbel P, Hermanns U, Wüthrich K, Glockshuber R (1999) Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. Nat Struct Biol 6:336–339

    PubMed  CrossRef  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    PubMed  CrossRef  CAS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    PubMed  CrossRef  CAS  Google Scholar 

  • Pettigrew D, Anderson KL, Billington J, Cota E, Simpson P, Urvil P, Rabuzin F, Roversi P, Nowicki B, du Merle L, Le Bouguénec C, Matthews S, Lea SM (2004) High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279:46851–46857

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramboarina S, Fernandes PJ, Daniell S, Islam S, Simpson P, Frankel G, Booy F, Donnenberg MS, Matthews S (2005) Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J Biol Chem 280:40252–40260

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramboarina S, Fernandes P, Simpson P, Frankel G, Donnenberg M, Matthews S (2004) Complete resonance assignments of bundlin (BfpA) from the bundle-forming pilus of enteropathogenic Escherichia coli. J Biomol NMR 29:427–428

    PubMed  CrossRef  CAS  Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    PubMed  CrossRef  CAS  Google Scholar 

  • Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA 107:2230–2234

    PubMed  CrossRef  CAS  Google Scholar 

  • Sauer FG, Fütterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G (1999) Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061

    PubMed  CrossRef  CAS  Google Scholar 

  • Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB (2009a) Two prion variants of Sup35p have in-register parallel β-sheet structures, independent of hydration. Biochemistry 48:5074–5082

    PubMed  CrossRef  CAS  Google Scholar 

  • Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB (2009b) The functional curli amyloid is not based on in-register parallel β-sheet structure. J Biol Chem 284:25065–25076

    PubMed  CrossRef  CAS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    PubMed  CrossRef  CAS  Google Scholar 

  • Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282

    PubMed  CrossRef  CAS  Google Scholar 

  • Sung MA, Chen HA, Matthews S (2001a) Sequential assignment and secondary structure of the triple-labelled carbohydrate-binding domain of papG from uropathogenic E. coli. J Biomol NMR 19:197–198

    PubMed  CrossRef  CAS  Google Scholar 

  • Sung MA, Fleming K, Chen HA, Matthews S (2001b) The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2: 621–627

    PubMed  CrossRef  CAS  Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55

    PubMed  CrossRef  CAS  Google Scholar 

  • Velarde JJ, Varney KM, Inman KG, Farfan M, Dudley E, Fletcher J, Weber DJ, Nataro JP (2007) Solution structure of the novel dispersin protein of enteroaggregative Escherichia coli. Mol Microbiol 66:1123–1135

    PubMed  CrossRef  CAS  Google Scholar 

  • Vilar M, Chou HT, Luhrs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of β-synuclein fibrils. Proc Natl Acad Sci USA 105:8637–8642

    PubMed  CrossRef  CAS  Google Scholar 

  • Waksman G, Hultgren SJ (2009) Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang X, Hammer ND, Chapman MR (2008) The molecular basis of functional bacterial amyloid polymerization and nucleation. J Biol Chem 283:21530–21539

    PubMed  CrossRef  CAS  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319:1523–1526

    PubMed  CrossRef  CAS  Google Scholar 

  • Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA 105:2403–2408

    PubMed  CrossRef  CAS  Google Scholar 

  • Xu XF, Tan YW, Lam L, Hackett J, Zhang M, Mok YK (2004) NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus. J Biol Chem 279:31599–31605

    PubMed  CrossRef  CAS  Google Scholar 

  • Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113:587–596

    PubMed  CrossRef  CAS  Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Shewmaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shewmaker, F. (2011). The Application of NMR Techniques to Bacterial Adhesins. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_15

Download citation