Skip to main content

Carbohydrate Mediated Bacterial Adhesion

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 715)

Abstract

In the process of adhesion, bacteria often carry proteins on their surface, adhesins, that bind to specific components of tissue cells or the extracellular matrix. In many cases these components are carbohydrate structures. The carbohydrate binding specificities of many bacteria have been uncovered over the years. The design and synthesis of inhibitors of bacterial adhesion has the potential to create new therapeutics for the prevention and possibly treatment of bacterial infections. Unfortunately, the carbohydrate structures often bind only weakly to the adhesion proteins, although drug design approaches can improve the situation. Furthermore, in some cases linking carbohydrates covalently together, to create so-called multivalent systems, can also significantly enhance the inhibitory potency. Besides adhesion inhibition as a potential therapeutic strategy, the adhesion proteins can also be used for detection. Novel methods to do this are being developed. These include the use of microarrays and glyconanoparticles. New developments in these areas are discussed.

Keywords

  • Bacterial Adhesion
  • Yersinia Pestis
  • Bacterial Binding
  • Lectin Microarray
  • Streptococcus Suis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0940-9_14
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0940-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7
Fig. 14.8

References

  • Arends JP, Zanen HC (1988) Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 10:131–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Barth KA, Coullerez G, Nilsson LM, Castelli R, Seeberger PH, Vogel V, Textor M (2008) An engineered mannoside presenting platform: Escherichia coli adhesion under static and dynamic conditions. Adv Funct Mater 18:1459–1469

    CrossRef  CAS  Google Scholar 

  • Bennett HJ, Roberts IS (2005) Identification of a new sialic acid-binding protein in Helicobacter pylori. FEMS Immunol Med Microbiol 44:163–169

    PubMed  CrossRef  CAS  Google Scholar 

  • Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J, Pokorná M, Wimmerová M, Varrot A, Imberty A (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol 383:837–853

    PubMed  CrossRef  CAS  Google Scholar 

  • Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slättegård R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55:441–455

    PubMed  CrossRef  CAS  Google Scholar 

  • Branderhorst HM, Kooij R, Salminen A, Jongeneel LH, Arnusch CJ, Liskamp RMJ, Finne J, Pieters RJ (2008) Synthesis of multivalent Streptococcus suis adhesion inhibitors by enzymatic cleavage of polygalacturonic acid and “click” conjugation. Org Biomol Chem 6:1425–1434

    PubMed  CrossRef  CAS  Google Scholar 

  • Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066

    PubMed  CrossRef  CAS  Google Scholar 

  • Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11:1701–1707

    PubMed  CrossRef  CAS  Google Scholar 

  • Disney MD, Zheng J, Swager TM, Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126:13343–13346

    PubMed  CrossRef  CAS  Google Scholar 

  • Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743

    PubMed  CrossRef  CAS  Google Scholar 

  • El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129:13392–13393

    PubMed  CrossRef  CAS  Google Scholar 

  • Firon N, Ashkenazi S, Mirelman D, Ofek I, Sharon N (1987) Aromatic a-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbritated Escherichia coli to teast and intestinal epithelial cells. Infect Immun 55:472–476

    PubMed  CAS  Google Scholar 

  • Ganan M, Collins M, Rastall R, Hotchkiss AT, Chau HK, Carrascosa AV, Martinez-Rodriguez AJ (2010) Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni. Int J Food Microbiol 137:181–185

    PubMed  CrossRef  CAS  Google Scholar 

  • Haataja S, Tikkanen K, Liukkonen J, François-Gerard C, Finne J (1993) Characterization of a novel bacterial adhesion specificity of Streptococcus suis recognizing blood group P receptor oligosaccharides. J Biol Chem 268:4311–4317

    PubMed  CAS  Google Scholar 

  • Haataja S, Tikkanen K, Nilsson U, Magnusson G, Karlsson KA, Finne J (1994) Oligosaccharide-receptor interaction of the Gal-α1-4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesion specificities. J Biol Chem 269:27466–27472

    PubMed  CAS  Google Scholar 

  • Haataja S, Zhang Z, Tikkanen K, Magnusson G, Finne J (1999) Determination of the cell adhesion specificity of Streptococcus suis with the complete set of monodeoxy analogues of globotriose. Glycoconj J 16:67–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Hatch DM, Weiss AA, Kale RR, Iyer SS (2008) Biotinylated bi- and tetra-antennary glycoconjugates for Escherichia coli detection. ChemBioChem 9:2433–2442

    PubMed  CrossRef  CAS  Google Scholar 

  • Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT (2000) Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017

    PubMed  CrossRef  CAS  Google Scholar 

  • Hsu KL, Mahal LK (2006a) A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protocol 1:543–549

    CrossRef  CAS  Google Scholar 

  • Hsu KL, Pilobello KT, Mahal LK (2006b) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–157

    PubMed  CrossRef  CAS  Google Scholar 

  • Huang CC, Chen CT, Shiang YC, Lin ZH, Chang HT (2009) Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal Chem 81:875–882

    PubMed  CrossRef  CAS  Google Scholar 

  • Imundo L, Barasch J, Prince A, Al-Awqati Q (1995) Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci USA 92:3019–3023

    PubMed  CrossRef  CAS  Google Scholar 

  • Islam B, Khan SN, Naeem A, Sharma V, Khan AU (2009) Novel effect of plant lectins on the inhibition of Streptococcus mutans biofilm formation on saliva-coated surface. J Appl Microbiol 106:1682–1689

    PubMed  CrossRef  CAS  Google Scholar 

  • Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Camara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K-E, Darbre T, Reymond J-L (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257

    PubMed  CrossRef  CAS  Google Scholar 

  • Joosten JAF, Loimaranta V, Appeldoorn CCM, Haataja S, El Maate FA, Liskamp RMJ, Finne J, Pieters RJ (2004) Inhibition of Streptococcus suis adhesion by dendritic galabiose compounds at low nanomolar concentration. J Med Chem 47:6499–6508

    PubMed  CrossRef  CAS  Google Scholar 

  • Khan AS, Hacker J (2000) Glycolipid receptors of F1C fimbrial adhesin of uropathogenic Escherichia coli. Adv Exp Med Biol 485:213–217

    PubMed  CrossRef  CAS  Google Scholar 

  • Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J (2000b) Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 68:3541–3547

    PubMed  CrossRef  CAS  Google Scholar 

  • Khan AS, Mühldorfer I, Demuth V, Wallner U, Korhonen TK, Hacker J (2000a) Functional analysis of the minor subunits of S fimbrial adhesin (Sfal) in pathogenic Escherichia coli. Mol Gen Genet 263:96–105

    PubMed  CrossRef  CAS  Google Scholar 

  • Kolomiets E, Swiderska MA, Kadam RU, Johansson EMV, Jaeger K-E, Darbre T, Reymond J-L (2009) Glycopeptide dendrimers with high affinity for the fucose-binding lectin LecB from Pseudomonas aeruginosa. ChemMedChem 4:562–569

    PubMed  CrossRef  CAS  Google Scholar 

  • Korhonen TK, Väisänen-Rhen V, Rhen M, Pere A, Parkkinen J, Finne J (1984) Escherichia Coli fimbriae recogninzing sialyl galactosides. J Bacteriol 159:762–766

    PubMed  CAS  Google Scholar 

  • Krivan HC, Roberts DD, Ginsburg V (1988) Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ-1-4Gal found in some glycolipids. Proc Natl Acad Sci USA 85:6157–6161

    PubMed  CrossRef  CAS  Google Scholar 

  • Krogfelt KA, Bergmans H, Klemm P (1990) Direct evidence that the FimH protein is the mannose-specific adhesion of Escherichia coli type 1 fimbriae. Infect Immun 58:1995–1998

    PubMed  CAS  Google Scholar 

  • Lameignere E, Shiao TC, Roy R, Wimmerova M, Dubreuil F, Varrot A, Imberty A (2010) Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. Glycobiology 20:87–98

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin C-C, Yeh Y-C, Yang C-Y, Chen C-L, Chen G-F, Chen C-C, Wu Y-C (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509

    PubMed  CrossRef  CAS  Google Scholar 

  • Magalhães A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osório H, David L, Le Pendu J, Haas R, Dell A, Borén T, Reis CA (2009) Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 19:1525–1536

    PubMed  CrossRef  Google Scholar 

  • Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angström J, Larsson T, Teneberg S, Karlsson KA, Altraja S, Wadstrom T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarstrom L, Borén T (2002) Helicobacter pylori sabA adhesin in persistent infection and chronic inflammation. Science 297:573–578

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller-Podraza H, Johansson P, Ångström J, Larsson T, Longard M, Karlsson K-A (2004) Studies on gangliosides with affinity for Helicobacter plyori: binding to natural and chemically modified structures. Glycobiology 14:205–217

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller-Podraza H, Lanne B, Ångström J, Teneberg S, Milh MA, Jovall PA, Karlsson H, Karlsson K-A (2005) Novel binding epitope for Helicobacfer pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J Biol Chem 280:19695–19703

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller-Podraza H, Weikkolainen K, Larsson T, Linde P, Helin J, Natunen J, Karlsson K-A (2009) Helicobacter pylori binding to new glycans based on N-acetyllactosamine. Glycobiology 19:399–407

    PubMed  CrossRef  CAS  Google Scholar 

  • Moch T, Hoschützky H, Hacker J, Kröncke K-D, Jann K (1987) Isolation and characterization of the α–sialyl-β-2,3-galactosyl-specific adhesin from fimbriated Escherichia coli. Proc Natl Acad Sci USA 84:3462–3466

    PubMed  CrossRef  CAS  Google Scholar 

  • Mukhopadhyay B, Martins MB, Karamanska R, Russell DA, Field RA (2009) Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E.coli recognition of mannnosidees. Tetrahedron Lett 50:886–889

    CrossRef  CAS  Google Scholar 

  • Roche N, Ångström J, Hurtig M, Larsson T, Borén T, Teneberg S (2004) Helicobacter pylori and complex gangliosides. Infect Immun 72:1519–1529

    PubMed  CrossRef  CAS  Google Scholar 

  • Saarimaa C, Peltola M, Raulio M, Neu TR, Salkinoja-Salonen MS, Neubauer P (2006) Characterization of adhesion threads of Deinococcus geothermalis as type IV pili. J Bacteriol 188:7016–7021

    PubMed  CrossRef  CAS  Google Scholar 

  • Sahly H, Keisari Y, Crouch E, Sharon N, Ofek I (2008) Recognition of bacterial surface polysaccharides by lectins of the innate immune system and its contribution to defense against infection: the case of pulmonary pathogens. Infect Immun 76:1322–1332

    PubMed  CrossRef  CAS  Google Scholar 

  • Sava IG, Zhang F, Toma I, Theilacker C, Li B, Baumert TF, Holst O, Linhardt RJ, Huebner J (2009) Novel interactions of glycosaminoglycans and bacterial glycolipids mediate binding of enterococci to human cells. J Biol Chem 284:18194–18201

    PubMed  CrossRef  CAS  Google Scholar 

  • Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG (2007) Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 79:2312–2319

    PubMed  CrossRef  CAS  Google Scholar 

  • Sheth HB, Lee KK, Wong WY, Srivastava G, Hindsgaul O, Hodges RS, Paranchych W, Irvin RT (1994) The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence β-GalNAc(1-4)β-Gal found in glycosphingolipids asialo-GM1 and asialo-GM2. Mol Microbiol 11:715–723

    PubMed  CrossRef  CAS  Google Scholar 

  • Sperling O, Fuchs A, Lindhorst TK (2006) Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org Biomol Chem 4:3913–3922

    PubMed  CrossRef  CAS  Google Scholar 

  • Staats JJ, Feder I, Okwumabua O, Chengappa MM (1997) Streptococcus suis: past and present. Vet Res Commun 21:381–407

    PubMed  CrossRef  CAS  Google Scholar 

  • Sung M-A, Fleming K, Chen HA, Matthews S (2001) The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2:621–627

    PubMed  CrossRef  CAS  Google Scholar 

  • Thomas RJ, Brooks T (2004a) Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol 53:833–840

    PubMed  CrossRef  CAS  Google Scholar 

  • Thomas RJ, Brooks TJ (2004b) Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells. Microb Pathog 36:83–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Walz A, Odenbreit S, Mahdavi J, Borén T, Ruhl S (2005) Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 15:700–708

    PubMed  CrossRef  CAS  Google Scholar 

  • Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland J. Pieters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pieters, R.J. (2011). Carbohydrate Mediated Bacterial Adhesion. In: Linke, D., Goldman, A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_14

Download citation