Skip to main content

Theoretical Study of σ-Bond Activation Reactions and Catalytic Reactions by Transition Metal Complexes

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry II

Abstract

This chapter reports mini-review of theoretical and computational studies of σ-bond activation reactions by transition metal complexes. Because the σ-bond activation reaction through oxidative addition has been theoretically investigated well for long, I wish to focus on the different types of σ-bond activation reactions here. One good example is the C–H σ-bond activation of benzene and methane by Pd(II)–formate complex. The σ-bond activation of methane by Ti(IV)-imido complex is another good example. Their theoretical and computational studies clearly indicate that these reactions are typical heterolytic σ-bond activation without any change of metal oxidation state. The orbital interaction diagram is completely different between the heterolytic σ-bond activation and the oxidative addition reactions; in the heterolytic σ-bond cleavage, the mixing of the C–H σ-bonding orbital into the bonding overlap between the C–H σ*-antibonding and the M–X bonding orbitals plays crucial roles. Theoretical study of oxidative addition to the M–L moiety, which is a new type of σ-bond activation, is also discussed based on theoretical study and recent experimental report. In this reaction, not only metal center but also organic ligand participates in the σ-bond activation reaction like the heterolytic σ-bond activation. However, the metal oxidation state increases by 2 in a formal sense like the usual oxidative addition, which is different from the heterolytic σ-bond activation. The heterolytic σ-bond activation is involved in many catalytic reactions. One of such good examples is Ru-catalyzed hydrogenation of CO2 to formic acid, in which the H–H bond cleavage with the Ru-(η1-OCOH) moiety is involved as a key step. This reaction is essentially the same as the C–H σ-bond activation of benzene with the Pd-(η1-OCOH) moiety. Another example is Pd-catalyzed cross-coupling reaction in which transmetallation is involved as a key step. This transmetallation is understood to be the heterolytic σ-bond activation. I wish to discuss how to accelerate this reaction based on theoretical and computational studies. Recently reported direct-cross coupling reaction occurs via heterolytic C–H σ-bond activation reaction, which is also discussed based on theoretical study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recent reviews: (a) Morokuma K, Musaev J (eds) (2008) Computational modeling for homogeneous and enzymatic catalysis, Wiley-VCH, Weinheim; (b) Maseras F, Lledós A (eds) (2002) Computational modeling of homogeneous catalysis. Kluwer Academic, Drodrecht; (c) Dedieu A (1999) Top Organomet Chem 4:69; (d) Torrent M, Sola M, Frenking G (2000) Chem Rev 100:433

    Google Scholar 

  2. Sakaki S, Ohnishi Yy, Sato H (2010) Chem Rec 10:49

    Google Scholar 

  3. (a) Miyaura N, Suzuki A (1995) Chem Rev 95:2457; (b) Suzuki A (1999) J Organomet Chem 576:147; (c) Miyaura N (2008) Bull Chem Soc Jpn 81:1535; (d) Miyaura N (2002) Cross-coupling reactions. Topics in current chemistry series, vol 219. Springer, New York, p 111

    Google Scholar 

  4. Recent reviews for C–H σ-bond activation: (a) Crabtree RH (1985) Chem Rev 85:245; (b) Crabtree RH (1995) Chem Rev 95:987; (c) Crabtree RH (2004) J Organomet Chem 689:4083; (d) Crabtree RH (2001) (trans: Dalton) J Chem Soc 2437

    Google Scholar 

  5. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28:154

    Article  CAS  Google Scholar 

  6. Jones WD (1999) Top Organomet Chem 3:9

    Article  CAS  Google Scholar 

  7. Sen A (1999) Top Organomet Chem 3:81

    Article  CAS  Google Scholar 

  8. Labingerand JA, Bercaw JE (2002) Nature 417:507

    Article  Google Scholar 

  9. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  10. Colby DA, Bergman RG, Ellman JA (2010) Chem Rev 110:624

    Article  CAS  Google Scholar 

  11. Gunay A, Theopold KH (2010) Chem Rev 110:1060

    Article  CAS  Google Scholar 

  12. Lyons TW, Sanford MS (2010) Chem Rev 110:1147

    Article  CAS  Google Scholar 

  13. (a) Sakaki S (2005) Topics in organometallic chemistry, vol 12. In: Frenking G (ed) Theoretical aspects of transition metal catalysis. Springer, Berlin, p 31; (b) Sakaki S (2003) Bull Korean Chem Soc 24:829

    Google Scholar 

  14. Niu SQ, Hall MB (2000) Chem Rev 100:353

    Article  CAS  Google Scholar 

  15. Dedieu A (2000) Chem Rev 100:543

    Article  CAS  Google Scholar 

  16. Balcels D, Clot E, Eisenstein O (2010) Chem Rev 110:749

    Article  Google Scholar 

  17. Tatsumi K, Hoffmann R, Yamamoto A, Still JK (1981) Bull Chem Soc Jpn 54:1857

    Article  CAS  Google Scholar 

  18. Shilov AE (1984) Activation of saturated hydrocarbons by transition metal complexes. D. Riedel, Dordrecht

    Google Scholar 

  19. Siegbahn PEM, Crabtree RH (1996) J Am Chem Soc 118:4442

    Article  CAS  Google Scholar 

  20. (a) Moritani I, Fujiwara Y (1967) Tetrahedron Lett 1119; (b) Fujiwara Y, Takagi K, Taniguchi Y (1006) Synlett 591, and references therein

    Google Scholar 

  21. Ackermann L (2011) Chem Rev 111:1315

    Article  CAS  Google Scholar 

  22. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) Chem Rev 107:5318

    Article  CAS  Google Scholar 

  23. (a) Hull KL, Sanford MS (2007) J Am Chem Soc 129:11904; (b) Lyons TW, Hull KL, Sanford MS (2011) J Am Chem Soc 133:4455

    Google Scholar 

  24. Chen X, Li JJ, Hao XS, Goodhue CE, Yu JQ (2006) J Am Chem Soc 128:78

    Article  CAS  Google Scholar 

  25. Wu J, Cui X, Chen L, Jiang G, Wu Y (2009) J Am Chem Soc 131:13888

    Article  CAS  Google Scholar 

  26. Biswas B, Sugimoto M, Sakaki S (2000) Organometallics 19:3985

    Article  Google Scholar 

  27. Periana RA, Taube DJ, Gamble S, Taube S, Satoh T, Fujii H (1998) Science 280:560

    Article  CAS  Google Scholar 

  28. (a) Kua J, Xu X, Periana RA, Goddard WA III (2002) Organometallics 21:511; (b) Xu X, Kua J, Periana RA, Goddard WA III (2003) Organometallics 22:2057

    Google Scholar 

  29. Cummins CC, Schaller CP, Van Duyne GD, Wolczanski PT, Chan EA-W, Hoffmann R (1991) J Am Chem Soc 113:2985

    Article  CAS  Google Scholar 

  30. Bailey BC, Fan H, Baum EW, Huffman JC, Baik M-H, Mindiola DJ (2005) J Am Chem Soc 127:16016

    Article  CAS  Google Scholar 

  31. (a) Schaller CP, Cummins CC, Wolczanski PT (1996) J Am Chem Soc 118:591; (b) Schaller CP, Bonanno JB, Wolczanski PT (1994) J Am Chem Soc 116:4133; (c) Schaller CP, Wolczanski PT (1993) Inorg Chem 32:131; (d) Schafer DF II, Wolczanski PT (1998) J Am Chem Soc 120:4881

    Google Scholar 

  32. de With J, Horton AD (1993) Angew Chem Int Ed Engl 32:903–905

    Article  Google Scholar 

  33. Hoyt HM, Bergman RG (2007) Angew Chem Int Ed Engl 46:5580

    Article  CAS  Google Scholar 

  34. (a) Cundari TR (1992) J Am Chem Soc 114:10557; (b) Cundari TR (1993) Organometallics 12:1998; (c) Cundari TR (1993) Organometallics 12:4971; (d) Cundari TR (1994) J Am Chem Soc 116:340; (e) Benson MT, Cundari TR, Moody EW (1995) J Organomet Chem 504:1; (f) Cundari TR, Matsunaga N, Moody EW (1996) J Phys Chem 100:6475; (g) Cundari TR, Klinchkman TR, Wolczanski PT (2002) J Am Chem Soc 124:1481

    Google Scholar 

  35. (a) Cundari TR (2000) Chem Rev 100:807; (b) Cundari TR, Gordon MS (1991) J Am Chem Soc 113:5231; (c) Cundari TR, Gordon MS (1992) J Am Chem Soc 114:539; (d) Cundari TR (1992) J Am Chem Soc 114:7879; (e) Cundari TR (1992) J Am Chem Soc 114:10557; (f) Cundari TR (1993) Organometallics 12:1998

    Google Scholar 

  36. Ochi N, Nakao Y, Sato H, Sakaki S (2007) J Am Chem Soc 129:8615

    Article  CAS  Google Scholar 

  37. (a) Kameno Y, Ikeda A, Nakao Y, Sato, H, Sakaki S (2005) J Phys Chem A 109:8055; (b) Ikeda A, Nakao Y, Sato H, Sakaki S (2007) J Phys Chem A 111:7124–7132; (c) Ikeda A, Kameno Y, Nakao Y, Sato H, Sakaki S (2007) J Organomet Chem 692:299–306

    Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  39. Ohnishi YY, Nakao Y, Sato H, Sakaki S (2007) J Phys Chem A 111:7915

    Article  CAS  Google Scholar 

  40. Ochi N, Nakao Y, Sato H, Sakaki S (2009) Can J Chem 87:1415

    Article  CAS  Google Scholar 

  41. (a) Zhao J, Goldman AS, Hartwig JF (2005) Science 307:1080; (b) Kanzelberger M, Zhang X, Emge TJ, Goldman AS, Zhao J, Incarvito C, Hartwig JF (2003) J Am Chem Soc 125:13644

    Google Scholar 

  42. (a) Ziegler T, Tschinke V, Becke A (1987) J Am Chem Soc 109:1351; (b) Ziegler T, Cheng W, Baerend ET, Ravenek W (1988) Inorg Chem 27:3458; (c) Ziegler T, Tschinke V, Versluis L (1988) Polyhedron 7:1625

    Google Scholar 

  43. Baba H, Suzuki S, Takemura T (1969) J Chem Phys 50:2078

    Article  CAS  Google Scholar 

  44. Kato S, Yamabe S, Fukui K (1974) J Chem Phys 60:572

    Article  Google Scholar 

  45. Frenking G (1995) J Phys Chem 99:9352

    Article  Google Scholar 

  46. Bennett JL, Wolczanski PT (1997) J Am Chem Soc 119:1

    Article  Google Scholar 

  47. (a) Walsh PJ, Baranger AM, Bergman RG (1992) J Am Chem Soc 114:1708; (b) Poise JL, Anderson RA, Bergman RG (1998) J Am Chem Soc 120:13405; (c) Anderson LL, Schmidt JAR, Arnold J, Bergman RG (2006) Organometallics 25:3394

    Google Scholar 

  48. Vujkovic N, Ward BD, Maisse-Francois A, Wadepohl H, Mountford P, Gade LH (2007) Organometallics 26:5522

    Article  CAS  Google Scholar 

  49. (a) Fu GC, Grubbs RH (1992) J Am Chem Soc 114:5426; (b) Fu GC, Grubbs RH (1992) J Am Chem Soc 114:7324; (c) Fu GC, Grubbs RH (1993) J Am Chem Soc 115:3800; (d) Fujimura O, Fu GC, Grubbs RH (1994) J Org Chem 59:4029; (e) Grubbs RH, Miller SJ, Fu GC (1995) Acc Chem Res 28:446, and references therein

    Google Scholar 

  50. Crowe WE, Zhang ZJ (1993) J Am Chem Soc 115:10998

    Article  CAS  Google Scholar 

  51. (a) Schlund R, Schrock RR, Crowe WE (1989) J Am Chem Soc 111:8004; (b) Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan M (1992) J Am Chem Soc 112:3875

    Google Scholar 

  52. Ochi N, Nakao Y, Sato H, Sakaki S (2010) J Phys Chem A 114:659–665

    Article  CAS  Google Scholar 

  53. (a) Yoshizawa K, Shiota Y, Yamabe T (1998) J Am Chem Soc 120:564; (b) Yoshizawa K, Shiota Y, Yamabe T (1998) Organometallics 17:2825; (c) Yoshizawa K, Shiota Y, Yamabe T (1999) J Am Chem Soc 121:147; (d) Shiota Y, Suzuki K, Yoshizawa K (2005) Organometallics 24:3532

    Google Scholar 

  54. (a) Böhme DK, Schwarz H (2005) Angew Chem Int Ed Engl 44:2336; (b) Dietl N, Schlangen M, Schwartz H (2011) Chem-A Eur J 17:1783; (c) Bozˇovic´ A, Feil S, Koyanagi GK, Viggiano AA, Zhang X, Schlangen M, Schwarz H, Bohme DK (2010) Chem Euro J 16:11605–11610

    Google Scholar 

  55. Li HY, Guo YL, Guo Y, Lu GZ (2008) J Chem Phys 128:051101

    Article  Google Scholar 

  56. Fu G, Chen ZN, Xu X, Wan HL (2008) J Phys Chem A 112:717

    Article  CAS  Google Scholar 

  57. Fu G, Xu X, Lu X, Wan H (2005) J Am Chem Soc 127:3989

    Article  CAS  Google Scholar 

  58. Chiodo S, Kondakova O, Michelini MC, Russo N, Sicilia E (2003) Inorg Chem 42:8773

    Article  CAS  Google Scholar 

  59. Kretschmer R, Zhang X, Schlangen M, Schwarz H (2011) Chem Euro J 17:3886

    Article  CAS  Google Scholar 

  60. (a) Goure E, Avenier P, Solans-Monfort X, Veyre L, Baudouin A, Kaya Y, Taoufik M, Basset JM, Eisenstein O, Quadrelli OA (2011) New J Chem 35:1011; (b) Avenier P, Solans-Monfort X, Veyre L, Renili F, Basset JM, Eisenstein O, Taoufik M, Quadrelli EA (2009) Top Catal 52:1482

    Google Scholar 

  61. See also references cited in ref. 12. (a) Maron L, Eisenstein O (2001) J Am Chem Soc 123:1036; (b) Perrin L, Maron L, Eisenstein O (2002) Inorg Chem 41:4355; (c) Maron L, Perrin L, Eisenstein O (2002) J Chem Soc Dalton Trans 534; (d) Clot E, Megret C, Kraft BM, Eisenstein O, Jones WD (2004) J Am Chem Soc 126:5647; (e) Maron L, Werkema EL, Perrin L, Eisenstein O, Andersen RA (2005) J Am Chem Soc 127:279; (f) Barros N, Eisenstein O, Maron L (2006) Dalton Trans 3052; (g) Perrin L, Eisenstein O, Maron L (2007) New J Chem 31:549; (h) Werkema EL, Andersen RA, Yahia A, Maron L, Eisenstein O (2009) Organometallics 28:3173; (i) Perrin L, Maron L, Eisenstein O, Tilley TD (2009) Organometallics 28:3767; (j) Werkema EL, Andersen RA, Maron L, Eisenstein O (2010) Dalton Trans 39:6648; (k) Guihaume J, Raynaud C, Eisenstein O, Perrin L, Maron L, Tilley TD (2010) Angew Chem Int Ed Engl 49:1816; (l) Werkema EL, Andersen RA, Maron L, Eisenstein O (2010) Dalton Trans 39:6648; (m) Werkema EL, Yahia A, Maron L, Eisenstein O, Andersen RA (2010) Organometallics 29:5103; (n) Kraft BM, Clot E, Eisenstein O, Brennessel WW, Jones WD (2010) Fluor Chem 131:1122

    Google Scholar 

  62. (a) Siegbahn PEM, Blomberg MRA, Pavlov MWN, Crabtree RH (2001) J Biol Inorg Chem 6:460; (b) Siegbahn PEM (2007) Chem Rev 107:4414

    Google Scholar 

  63. Mylvaganam K, Bacskay GB, Hush NS (2000) J Am Chem Soc 122:2041

    Article  CAS  Google Scholar 

  64. Zhu H, Ziegler T (2006) J Organomet Chem 691:4486

    Article  CAS  Google Scholar 

  65. (a) Bartlett KL, Goldberg KI, Borden WT (2000) J Am Chem Soc 122:1456; (b) Bartlett KL, Goldberg KI, Borden WT (2001) Organometallics 20:2669–2678

    Google Scholar 

  66. (a) Butschke B, Schlangen M, Schroder D, Schwarz H (2008) Chem Eur J 14:11050; (b) Butschke B, Schlangen M, Schroder D, Schwarz H (2008) Helv Chim Acta 91:1902–1915; (c) Butschke B, Schroder D, Schwarz H (2009) Organometallics 28:4340; (d) Butschke B, Schwarz H (2011) Organometallics 30:1588

    Google Scholar 

  67. Ess DH, Goddard WA III, Periana RA (2010) Organometallics 29:6459

    Article  CAS  Google Scholar 

  68. Cui Q, Musaev DG, Morokuma K (1998) Organometallics 17:1383

    Article  CAS  Google Scholar 

  69. Cui Q, Musaev DG, Morokuma K (1998) Organometallics 17:742

    Article  CAS  Google Scholar 

  70. Sakaki S, Kai S, Sugimoto M (1999) Organometallics 18:4825–4837

    Article  CAS  Google Scholar 

  71. (a) Sakaki S, Takayama T, Sugimoto M (2001) Chem Lett 1222–1223; (b) Sakaki S, Takayama T, Sumimoto M, Sugimoto M (2004) J Am Chem Soc 126:3332–3348

    Google Scholar 

  72. (a) Sakaki S, Ogawa M, Musashi Y, Arai T (1994) J Am Chem Soc 116:7258–726; (b) Sakaki S, Mizoe N, Sugimoto M (1998) Organometallics 17: 2510–2523; (c) Sakaki S, Mizoe N, Musashi Y, Sugimoto M (1999) J Mol Struct (Theochem) 461–462:533–546

    Google Scholar 

  73. Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto F, Matsuzaki M (2002) Organometallics 21:3788–3802

    Article  CAS  Google Scholar 

  74. Takahashi T, Hasegawa M, Suzuki N, Saburi M, Rousset CJ, Fanwick PE, Negishi E-I (1991) J Am Chem Soc 113:8564

    Article  CAS  Google Scholar 

  75. Corey JY, Zhu X-H (1992) Organometallics 11:672

    Article  CAS  Google Scholar 

  76. (a) Tanabe Y, Mizuhata Y, Tokitoh N (2008) Chem Lett 37:724–725; (b) Tanabe Y, Mizuhata Y, Tokitoh N (2010) Pure Appl Chem 82:879–890

    Google Scholar 

  77. (a) Jessop PG, Ikariya T, Noyori R (1994) Nature 368:231; (b) Jessop PG, Hsiano Y, Ikariya T, Noyori R (1994) J Am Chem Soc 116:8851; (c) Jessop PG, Ikariya T, Noyori R (1996) J Am Chem Soc 118:344

    Google Scholar 

  78. (a) Musashi Y, Sakaki S (2000) J Am Chem Soc 122:3867; (b) Ohnishi Y-y, Matsunaga T, Nakao Y, Sato H, Sakaki S (2005) J Am Chem Soc 127:4021; (c) Ohnishi Y-y, Nakao Y, Sato H, Sakaki S (2006) Organometallics 25:3352

    Google Scholar 

  79. (a) Hutschka F, Dedieu A, Eichberger M, Fornikca R, Reitner W (1997) J Am Chem Soc 119:4432; (b) Hutschka F, Dedieu A (1997) J Chem Soc Dalton Trans 1899

    Google Scholar 

  80. Musashi Y, Sakaki S (2002) J Am Chem Soc 124:7588

    Article  CAS  Google Scholar 

  81. (a) Ishiyama T, Murata M, Miyaura N (1995) J Org Chem 60:7508; (b) Ishiyama T, Ahiko T, Miyaura N (1996) Tetrahedron Lett 6889; (c) Ishiyama T, Itoh Y, Kitano T, Miyaura N (1997) Tetrahedron Lett 3447; (d) Ahiko T, Ishiyama T, Miyaura N (1997) Chem Lett 811

    Google Scholar 

  82. Hiyama T (2002) J Organomet Chem 653:58

    Article  CAS  Google Scholar 

  83. Sumimoto M, Iwane N, Takahama T, Sakaki S (2004) J Am Chem Soc 126:10457

    Article  CAS  Google Scholar 

  84. Sugiyama A, Ohnishi Y-y, Nakaoka M, Nakao Y, Sato H, Sakaki S, Nakao Y, Hiyama T (2008) J Am Chem Soc 130: 12975

    Google Scholar 

  85. (a) Sakaki S, Biswas B, Sugimoto M (1998) Organometallics 17:1278; (b) Sakakai S, Kai S, Sugimoto M (1999) Organometallics 18:4825; (c) Sakaki S, Biswas B, Musashi Y, Sugimoto M (2000) J Organomet Chem 611:288

    Google Scholar 

  86. Ishikawa A, Nakao Y, Sato H, Sakaki S (2010) Dalton Trans 39:3279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many works discussed here were carried out under financial support from Ministry of Education, Culture, Sports, Science, and Technology through Grant-in-Aids of Special Research Field (No. 461; Molecular Theory for Real Systems) and Specially Promoted Research (No.22000009).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sakaki, S. (2012). Theoretical Study of σ-Bond Activation Reactions and Catalytic Reactions by Transition Metal Complexes. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0923-2_11

Download citation

Publish with us

Policies and ethics