State-of-the-Art Calculations of the 3d Transition-Metal Dimers: Mn2 and Sc2

Chapter

Abstract

The problem of calculation of the electronic structure of transition-metal clusters (even dimers) still presents a challenge for computational chemistry. The reason is that the expansion of the ground state wave function on electronic configurations does not contain a principal configuration and a large number of reference configurations must be treated equally. Thus the multireference (MR) approaches are, in general, mandatory.

According to our studies of Mn2 by the MRCISD(+Q)/aug-cc-pVQZ and ACPF approaches, the ground state is the singlet, \( {\text{X}}{}^1\Sigma_{\text{g}}^{+} \), with the binding energy D e = 1.7 kcal/mol (0.07 eV) and R e = 3.6 Å. It was proved that the binding in the Mn2 dimer is of the van der Waals type. The calculation of Sc2 at the MRCISD(+Q)/cc-pV5Z level, showed that its ground state corresponds to a quintet, \( {}^5\Sigma_{\text{u}}^{-} \), in agreement with experiment and previous precise calculations. The triplet \( {}^3\Sigma_{\text{u}}^{-} \) state is located about 1.1 kcal/mol above. The ground state, \( {\text{X}}{}^5\Sigma_{\text{u}}^{-} \), of the Sc2 dimer was calculated by the MRCISD(+Q) method at the complete basis set (CBS) limit. This is the first MRCISD(+Q) calculation of 3d transition-metal clusters at the CBS limit. From the Mulliken population analysis and comparison with atomic energies follows that in the ground state Sc2 dissociates on one Sc in the ground state and the other in the second excited quartet state, 4Fu. The spectroscopic parameters of the ground potential curve, obtained by the Dunham analysis at the valence MRCISD(+Q)/CBS level, are: R e = 5.20 bohr, D e = 50.37 kcal/mol, and ω e = 234.5 cm−1. The obtained value for the harmonic frequency agrees very well with the experimental one, ω e = 239.9 cm−1. The Sc2 dimer is stabilized by the covalent bonding on the hybrid atomic orbitals.

Keywords

Dissociation Limit Complete Active Space Diffusion Monte Carlo CASSCF Level Multireference Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Morse MD (1986) Chem Rev 86:1049CrossRefGoogle Scholar
  2. 2.
    Lombardi JR, Davis B (2002) Chem Rev 102:2431CrossRefGoogle Scholar
  3. 3.
    Demangeat C, Parbelas JC (2002) Rep Prog Phys 65:1679CrossRefGoogle Scholar
  4. 4.
    Dagotto E (2003) The physics of manganites and related compounds, vol 136, Solid-state science. Springer, BerlinGoogle Scholar
  5. 5.
    Chu D, Kenning CG, Orbach R (1994) Phys Rev Lett 72:3270CrossRefGoogle Scholar
  6. 6.
    Baumann CA, Van Zee RJ, Bhat SV, Weltner W Jr (1983) J Chem Phys 78:190CrossRefGoogle Scholar
  7. 7.
    Cheeseman M, Van Zee RJ, Flanagan HL, Weltner W Jr (1990) J Chem Phys 92:1553CrossRefGoogle Scholar
  8. 8.
    Knickelbein MB (2004) Phys Rev B 70:014424CrossRefGoogle Scholar
  9. 9.
    Haslett TL, Moskovits M, Weitzman AL (1989) J Mol Spectrosc 135:259CrossRefGoogle Scholar
  10. 10.
    Terasaki A, Minemoto S, Kondow T (2002) J Chem Phys 117:7520CrossRefGoogle Scholar
  11. 11.
    Walch S, Bauschlicher CW Jr, Roos BO (1983) Chem Phys Lett 103:175CrossRefGoogle Scholar
  12. 12.
    Das GP, Jaffe RL (1984) Chem Phys Lett 109:206CrossRefGoogle Scholar
  13. 13.
    Bauschlicher CW Jr (1989) Chem Phys Lett 156:95CrossRefGoogle Scholar
  14. 14.
    Kaplan IG (2006) Intermolecular interactions: physical picture, computational methods and model potentials. Wiley, ChichesterCrossRefGoogle Scholar
  15. 15.
    Das G, Wahl AC (1966) J Chem Phys 44:87CrossRefGoogle Scholar
  16. 16.
    Veirllad A, Clementi E (1967) Theor Chim Acta 7:133CrossRefGoogle Scholar
  17. 17.
    Werner H-J (1987) Adv Chem Phys 69:1CrossRefGoogle Scholar
  18. 18.
    Shepard R (1987) Adv Chem Phys 69:63CrossRefGoogle Scholar
  19. 19.
    Roos BO (1987) Adv Chem Phys 69:399CrossRefGoogle Scholar
  20. 20.
    Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053CrossRefGoogle Scholar
  21. 21.
    Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259CrossRefGoogle Scholar
  22. 22.
    Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61CrossRefGoogle Scholar
  23. 23.
    Davidson ER, Silver DW (1977) Chem Phys Lett 52:403CrossRefGoogle Scholar
  24. 24.
    Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413CrossRefGoogle Scholar
  25. 25.
    MOLPRO 2010.1, a package of ab initio programs written by Werner H-J, Knowles PJ, Lindh R, Manby FR, M. Schütz, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, M. Wang, A. WolfGoogle Scholar
  26. 26.
    Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175CrossRefGoogle Scholar
  27. 27.
    Nesbet RK (1964) Phys Rev 135:A460CrossRefGoogle Scholar
  28. 28.
    Wang B, Chen Z (2004) Chem Phys Lett 387:395CrossRefGoogle Scholar
  29. 29.
    Yamamoto S, Tatewaki H, Moriyama H, Nakano H (2006) J Chem Phys 124:124302CrossRefGoogle Scholar
  30. 30.
    Negodaev I, de Graaf C, Caballol R (2008) Chem Phys Lett 458:290CrossRefGoogle Scholar
  31. 31.
    Buchachenko AA (2008) Chem Phys Lett 459:73CrossRefGoogle Scholar
  32. 32.
    Camacho C, Yamamoto S, Witek HA (2008) Phys Chem Chem Phys 10:5128CrossRefGoogle Scholar
  33. 33.
    Angeli C, Cavallini A, Cimiraglia R (2008) J Chem Phys 128:244317CrossRefGoogle Scholar
  34. 34.
    Mon MS, Mori H, Miyoshi E (2008) Chem Phys Lett 462:23CrossRefGoogle Scholar
  35. 35.
    Tzeli D, Miranda U, Kaplan IG, Mavridis A (2008) J Chem Phys 129:154310CrossRefGoogle Scholar
  36. 36.
    Buchachenko AA, Chałasiński G, Szczęśniak MM (2010) J Chem Phys 132:024312CrossRefGoogle Scholar
  37. 37.
    Nakano H (1993) J Chem Phys 99:7983CrossRefGoogle Scholar
  38. 38.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J-P (2001) J Chem Phys 114:10252CrossRefGoogle Scholar
  39. 39.
    Angeli C, Pastore M, Cimiraglia R (2007) Theor Chem Acc 117:743CrossRefGoogle Scholar
  40. 40.
    Osanai Y, Mon MS, Noro T, Mori H, Miyoshi E (2008) Chem Phys Lett 452:210CrossRefGoogle Scholar
  41. 41.
    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Harris J, Jones RO (1979) J Chem Phys 70:830CrossRefGoogle Scholar
  44. 44.
    Salahub DR, Baykara NA (1985) Surf Sci 156:605CrossRefGoogle Scholar
  45. 45.
    Fujima N, Yamaguchi T (1995) J Phys Soc Jpn 64:1251CrossRefGoogle Scholar
  46. 46.
    Nayak SK, Jena P (1998) Chem Phys Lett 289:473CrossRefGoogle Scholar
  47. 47.
    Nayak SK, Rao BK, Jena P (1998) J Phys Condens Mat 10:10863CrossRefGoogle Scholar
  48. 48.
    Pederson MK, Reuse FA, Khanna SN (1998) Phys Rev B 58:5632CrossRefGoogle Scholar
  49. 49.
    Desmarais N, Reuse FA, Khanna SN (2000) J Chem Phys 112:5576CrossRefGoogle Scholar
  50. 50.
    Yanagisawa S, Tsuneda T, Hirao K (2000) J Chem Phys 112:545CrossRefGoogle Scholar
  51. 51.
    Barden CJ, Rienstra-Kiracofe CC, Schaefer HF III (2000) J Chem Phys 113:690CrossRefGoogle Scholar
  52. 52.
    Gutsev GL, Bauschlicher CW Jr (2003) J Phys Chem A 107:4755CrossRefGoogle Scholar
  53. 53.
    Valiev M, Bylaska EJ, Weare JH (2003) J Chem Phys 119:5955CrossRefGoogle Scholar
  54. 54.
    Bobadova-Parvanova P, Jackson KA, Srinivas S, Horoi M (2005) J Chem Phys 122:014310CrossRefGoogle Scholar
  55. 55.
    Kabir M, Mookerjee A, Kanhere DJ (2006) Phys Rev B 73:224439CrossRefGoogle Scholar
  56. 56.
    Jellinek J, Acioli PH, García-Rodeja J, Zheng W, Thomas OC, Bowen KH Jr (2006) Phys Rev B 74:153401CrossRefGoogle Scholar
  57. 57.
    Jellinek J, Acioli PH (2003) J Chem Phys 118:7783CrossRefGoogle Scholar
  58. 58.
    Kaplan IG (2007) J Mol Struct 838:39CrossRefGoogle Scholar
  59. 59.
    Kaplan IG (2007) Int J Quantum Chem 107:2595CrossRefGoogle Scholar
  60. 60.
    Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89CrossRefGoogle Scholar
  61. 61.
    Jansen G, Hess BA (1989) Phys Rev A 39:6016CrossRefGoogle Scholar
  62. 62.
    Jansen HB, Ros P (1969) Chem Phys Lett 3:140CrossRefGoogle Scholar
  63. 63.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  64. 64.
    Liu B, Mclean AD (1973) J Chem Phys 59:4557CrossRefGoogle Scholar
  65. 65.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2006) MOLPRO 2006.1, a package of ab initio programsGoogle Scholar
  66. 66.
    Kirkwood AK, Bier KD, Tompson JK, Haslett TL, Huber AS, Moskovits M (1991) J Phys Chem 95:2644CrossRefGoogle Scholar
  67. 67.
    Bier KD, Haslett TL, Kirkwood AK, Moskovits M (1988) J Chem Phys 89:6CrossRefGoogle Scholar
  68. 68.
    Kaplan IG (1975) Symmetry of many-electron systems. Academic, New YorkGoogle Scholar
  69. 69.
    Kaplan IG, Rodimova OB (1973) Int J Quantum Chem 7:1203CrossRefGoogle Scholar
  70. 70.
    Bunge CF, Barrientos JA, Bunge A (1993) Atomic Data Nucl Data Tables 53:113CrossRefGoogle Scholar
  71. 71.
    Löwdin P-O (1959) Adv Chem Phys 2:207CrossRefGoogle Scholar
  72. 72.
    Kaplan IG, Roszak S, Leszczynski J (2000) J Chem Phys 113:6245CrossRefGoogle Scholar
  73. 73.
    Pápai I, Castro M (1997) Chem Phys Lett 267:551CrossRefGoogle Scholar
  74. 74.
    Gutsev GL, Jena P, Rao BK, Khanna SN (2001) J Chem Phys 114:10738CrossRefGoogle Scholar
  75. 75.
    Furche F, Perdew JP (2006) J Chem Phys 124:044103CrossRefGoogle Scholar
  76. 76.
    Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105CrossRefGoogle Scholar
  77. 77.
    Das G (1982) Chem Phys Lett 86:482CrossRefGoogle Scholar
  78. 78.
    Walch SP, Bauschlicher CW Jr (1983) Chem Phys Lett 94:290CrossRefGoogle Scholar
  79. 79.
    Walch SP, Bauschlicher CW Jr (1983) J Chem Phys 79:3590CrossRefGoogle Scholar
  80. 80.
    Jeung GH (1986) Chem Phys Lett 125:407CrossRefGoogle Scholar
  81. 81.
    Åkeby H, Peterson LGM, Siegbahn PEM (1992) J Chem Phys 97:1850CrossRefGoogle Scholar
  82. 82.
    Åkeby H, Peterson LGM (1993) J Mol Spectrosc 159:17CrossRefGoogle Scholar
  83. 83.
    Suzuki Y, Asai S, Kobayashi K, Noro T, Sasaki F, Tatewaki H (1997) Chem Phys Lett 268:213CrossRefGoogle Scholar
  84. 84.
    Matxain JL, Rezabal E, Lopez X, Ugalde JM, Gagliardi L (2008) J Chem Phys 128:194315CrossRefGoogle Scholar
  85. 85.
    Kalemos A, Kaplan IG, Mavridis A (2010) J Chem Phys 132:024309CrossRefGoogle Scholar
  86. 86.
    Camacho C, Cimiraglia R, Witek HA (2010) J Chem Phys 132:244306CrossRefGoogle Scholar
  87. 87.
    Kaplan IG, Miranda U (2011) AIP Advances 1:022108CrossRefGoogle Scholar
  88. 88.
    Miranda U, Kaplan IG (2011) Eur Phys J D. doi:DOI: 10.1140/epjd/e2010-10607-y Google Scholar
  89. 89.
    Knight LB, Van Zee JR, Weltner W (1983) Chem Phys Lett 94:296CrossRefGoogle Scholar
  90. 90.
    Moskovits M, Di Lella DP, Limm W (1984) J Chem Phys 80:626CrossRefGoogle Scholar
  91. 91.
    Knight LB, McKinley AJ, Babb RM, Hill DW, Morse MD (1993) J Chem Phys 99:7376CrossRefGoogle Scholar
  92. 92.
    Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2000) Nature 408:426CrossRefGoogle Scholar
  93. 93.
    Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427CrossRefGoogle Scholar
  94. 94.
    Shinohara H, Sato H, Ohkohchi M, Ando Y, Kodama T, Shida T, Kato T, Saito Y (1992) Nature 357:52CrossRefGoogle Scholar
  95. 95.
    Yannoni CS, Hoinkis M, de Vries MS, Bethune DS, Salem JR, Crowder MS, Johnson RD (1992) Science 256:1191CrossRefGoogle Scholar
  96. 96.
    Ralchenko Y, Kramida AE, Reader J, NIST ASD Team (2008) NIST atomic spectra database (version 3.1.5), Online. Available http://physics.nist.gov/asd3 (Aug 14 2009). National Institute of Standards and Technology, Gaithersburg
  97. 97.
    Matxain JL, Rezabal E, Lopez X, Ugalde JM, Gagliardi L (2008) J Chem Phys 132:139901CrossRefGoogle Scholar
  98. 98.
    Camacho C, Cimiraglia R, Witek HA (2010) Phys Chem Chem Phys 12:5058CrossRefGoogle Scholar
  99. 99.
    Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803CrossRefGoogle Scholar
  100. 100.
    Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514CrossRefGoogle Scholar
  101. 101.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) MOLPRO 2009.1, a package of ab initio programsGoogle Scholar
  102. 102.
    Varandas AJC (2007) J Chem Phys 126:244105CrossRefGoogle Scholar
  103. 103.
    Brown FR, Truhlar DG (1985) Chem Phys Lett 117:307CrossRefGoogle Scholar
  104. 104.
    Hollister C, Sinanoĝlu O (1966) J Am Chem Soc 88:13CrossRefGoogle Scholar
  105. 105.
    Őksűz I, Sinanoĝlu O (1969) Phys Rev 181:42CrossRefGoogle Scholar
  106. 106.
    Sinanoĝlu O, Brueckner KA (1970) Three approaches to electron correlation in atoms, Chapter 5, Yale University Press, New Haven, CTGoogle Scholar
  107. 107.
    Becke AD (2003) J Chem Phys 119:2972CrossRefGoogle Scholar
  108. 108.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  109. 109.
    Feller D (1992) J Chem Phys 96:6104CrossRefGoogle Scholar
  110. 110.
    Xantheas SS, Dunning TH Jr (1993) J Phys Chem 97:18CrossRefGoogle Scholar
  111. 111.
    Feller D, Sordo JA (2000) J Chem Phys 113:485CrossRefGoogle Scholar
  112. 112.
    Karton A, Martin JML (2006) Theor Chem Acc 115:330CrossRefGoogle Scholar
  113. 113.
    Jensen F (2005) Theor Chem Acc 113:267CrossRefGoogle Scholar
  114. 114.
    Dunham JL (1932) Phys Rev 41:721CrossRefGoogle Scholar
  115. 115.
    McWeeny R (1979) Coulson’s valence, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations