Skip to main content

Many-Body Brillouin-Wigner Theories: Development and Prospects

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry I
  • 2374 Accesses

Abstract

We describe a quantum chemical project focussed on the development of state-specific many-body Brillouin–Wigner methods which was undertaken during the period 1994 to the present day. The Brillouin–Wigner methodology has been shown to provide an approach to the many-body problem which is especially useful when a multireference formulation is required since it completely avoids the ‘intruder state’ problem that often plagues the traditional Rayleigh–Schrödinger expansion. The many-body Brillouin–Wigner approach provides the basis for robust methods which can be applied routinely in situations where the more familiar single-reference formalism is not adequate in Coupled Cluster (cc) and Perturbation Theory (pt) formalisms. It can also be employed in Configuration Interaction (ci) studies. Although the Brillouin–Wigner expansion is not itself a ‘many-body’ theory, it can be subjected to a posteriori adjustments which removes unphysical terms, which in the diagrammatic formalism correspond to unlinked diagrams, and recover a ‘many-body’ method. As well as reviewing progress and prospects of the state-specific Brillouin–Wigner approach, we describe the new methods of communication that were deployed to facilitate effective collaboration between researchers located as geographically distributed sites. A web-based collaborative virtual environment (cve) was designed for research on molecular electronic structure theory which will support the development of quantum chemical methodology for challenging applications. This cve was developed whilst actually carrying out a significant but specific, ‘real life’ quantum chemical project so that those features which were found to be useful in facilitating remote collaboration could be evaluated and incorporated in an emerging framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a recent account of Einstein’s explanation of Brownian motion see Renn [99].

  2. 2.

    For a recent account of the development of quantum theory see Kumar’s Quantum – Einstein, Bohr and the Great Debate about the Nature of Reality [73]. The six volumes by Mehra and Rechenberg on The Historical Development of Quantum Theory [86] provide a definitive account.

  3. 3.

    See, for example, the Handbook of Molecular Physics and Quantum Chemistry [123] for a recent major reference work.

  4. 4.

    Brillouin–Wigner perturbation theory was originally introduced in independent publications by Lennard-Jones [74] in 1930, by Brillouin [11] in 1932 and by Wigner [107] in 1935.

  5. 5.

    By Moore [87] of Intel. This has been dubbed “Moore’s Law”.

  6. 6.

    gigaflops: 109 floating-point operations per second.

  7. 7.

    petaflops: 1015 floating-point operations per second.

  8. 8.

    exaflops: 1018 floating-point operations per second.

  9. 9.

    For an introduction to the field of collaborative virtual environments see, for example, Churchill et al. [19].

  10. 10.

    Parts of this article are taken from the authors’ book entitled Brillouin–Wigner Methods for Many-Body Systems.

  11. 11.

    See also the work of Das and his coworkers [29].

  12. 12.

    We are not concerned here with questions of computational efficiency.

  13. 13.

    Further details of the Rayleigh–Schrödinger perturbation expansion can be found elsewhere [110].

  14. 14.

    Parts of this digression are taken from the authors’ article entitled A Collaborative Virtual Environment for Molecular Electronic Structure Theory: Prototype for the Study of Many-Body Methods [121] which was published in the volume Frontiers in Quantum Systems in Chemistry and Physics.

  15. 15.

    Project number: D23/0001/01: European Metalaboratory for multireference quantum chemical methods (01/02/2001–18/07/2005). Participants: P. Čársky, J. Pittner (J. Heyrovsky Institute, Prague, Czech Republic), I. Hubač (Comenius University, Slovakia), S. Wilson (Rutherford Appleton Laboratory, UK), W. Wenzel (Universität Dortmund, Germany), L. Meissner (Nicholas Copernicus University, Poland), V. Staemmler (Ruhr Universität Bochum Germany), C. Tsipis (Aristotle University of Thessaloniki, Greece), A. Mavridis (National and Kapodistrian University of Athens, Greece).

  16. 16.

    Loosely speaking, a metalaboratory may be defined as a cluster of geographically distributed resources.

  17. 17.

    eucost Action d9 “Advanced computational chemistry of increasingly complex systems”.

  18. 18.

    For some details see, for example the Wikipedia entry on e-science at http://en.wikipedia.org/wiki/E-Science

    Currently the largest focus in e-science is in the United Kingdom. In the United States similar initiatives are termed cyberinfrastructure projects.

  19. 19.

    These methods are often written as mp2, mp3, mp4, etc., that is Møller-Plesset perturbation theory [88] in second, third, fourth order.

  20. 20.

    These methods are often written as mr-mp2, mr-mp3, mr-mp4, etc., that is multireference Møller-Plesset perturbation theory in second, third, fourth order.

  21. 21.

    See Chap. 1 of reference [51] for a brief discussion of the contribution of Lennard-Jones to Brillouin-Wigner theory.

References

  1. Babbage C (1837) On the great law which regulates matter. Ninth bridgewater treatise. p 167. See Knight DM (1968) Classical scientific papers: chemistry. Mills and Boon, London

    Google Scholar 

  2. Baker DJ, Moncrieff D, Saunders VR, Wilson S (1991) Comput Phys Commun 62:25

    CAS  Google Scholar 

  3. Bartlett RJ (ed) (1997) Recent advances in coupled cluster methods. Recent advances in computational chemistry, vol 3. World Scientific, Singapore

    Google Scholar 

  4. BBC News, http://news.bbc.co.uk/1/hi/8552410.stm Accessed on 26 Jan 2011. Source International Telecommunication Union (ITU), http://www.itu.int

  5. Bhaskaran-Nair K, Demel O, Pittner J (2008) J Chem Phys 129:184105

    PubMed  Google Scholar 

  6. Bhaskaran-Nair K, Demel O, Pittner J (2010) J Chem Phys 132:154105

    PubMed  Google Scholar 

  7. Bloch C (1958) Nucl Phys 6:329

    CAS  Google Scholar 

  8. Bohr N (1913) Phil Mag 26:1, 476, 857

    Google Scholar 

  9. Born M, Oppenheimer JR (1927) Ann Physik 84:457 An English translation of the paper by Blinder SM with emendations by Sutcliffe BT, Geppert W (2003) In: Wilson S, Bernath PF, McWeeny R (eds) Handbook of molecular physics and quantum chemistry, vol 1. Wiley, Chichester

    Google Scholar 

  10. Brandow BH (1967) Rev Mod Phys 39:771

    CAS  Google Scholar 

  11. Brillouin L (1932) J Physique 7:373

    Google Scholar 

  12. Brown R (1828) Edinb New Philos J 5:358-371

    Google Scholar 

  13. Brueckner KA (1955) Phys Rev 100:36

    CAS  Google Scholar 

  14. Čársky P, Hrouda V, Sychrovsky V, Hubač I Babinec P, Mach P, Urban J, Mášik J (1995) Collect Czech Chem Commun 60:1419

    Google Scholar 

  15. Chattopadhyay S, Mahapatra US, Mukherjee D (1999) J Chem Phys 111:3820

    CAS  Google Scholar 

  16. Chattopadhyay S, Mahapatra US, Mukherjee D (2000) J Chem Phys 112:7939

    CAS  Google Scholar 

  17. Chattopadhyay S, Ghosh P, Mahapatra US (2004) J Phys B: At Mol Opt Phys 37:495

    CAS  Google Scholar 

  18. Chattopadhyay S, Pahari D, Mukherjee D, Mahapatra US (2004) J Chem Phys 120:5968

    CAS  PubMed  Google Scholar 

  19. Churchill EF, Snowdon DN, Munro AJ (2001) Collaborative virtual environments: digital places and spaces for interaction (Computer supported cooperative work). Springer, London/ New York

    Google Scholar 

  20. Čížek J (1966) J Chem Phys 45:4256

    Google Scholar 

  21. Čížek J (1969) Adv Chem Phys 45:35

    Google Scholar 

  22. Coester F (1958) Nucl Phys 7:421

    Google Scholar 

  23. Coester F, Kümmel H (1960) Nucl Phys 17:4777

    Google Scholar 

  24. Das S, Mukherjee D, Kállay M (2010) J Chem Phys 132:074103

    PubMed  Google Scholar 

  25. Das S, Kállay M, Mukherjee D (2010) J Chem Phys 133:234110

    PubMed  Google Scholar 

  26. Datta D, Mukherjee D (2011) J Chem Phys 134:054122

    PubMed  Google Scholar 

  27. Demel O, Bhaskaran-Nair K, Pittner J (2010) J Chem Phys 133:134106

    PubMed  Google Scholar 

  28. Dirac PAM (1929) Proc R Soc (London) A 123:714

    Google Scholar 

  29. Dutta NC, Matsubara C, Pu RT, Das TP (1969) Phys Rev 177:33

    CAS  Google Scholar 

  30. Dyson F (1949) Phys Rev 75:486

    Google Scholar 

  31. Dyson F (1949) Phys Rev 75:1736

    Google Scholar 

  32. Einstein A (1905) Ann Phys (Leipzig) 17:549-560

    CAS  Google Scholar 

  33. Evangelista FA, Allen WD, Schaefer HF III (2006) J Chem Phys 125:154113

    PubMed  Google Scholar 

  34. Evangelista FA, Allen WD, Schaefer HF III (2007) J Chem Phys 127:024102

    PubMed  Google Scholar 

  35. Evangelista FA, Simmonett AC, Allen WD, Schaefer HF III (2008) J Gauss, J Chem Phys 128:124104 (E)

    PubMed  Google Scholar 

  36. Feynman RP (1949) Phys Rev 76:749

    CAS  Google Scholar 

  37. Feynman RP (1949) Phys Rev 76:769

    Google Scholar 

  38. Goldstone J (1957) Proc R Soc (London) A 239:267

    Google Scholar 

  39. Halacy DS (1970) Charles Babbage, father of the computer. Macmillan, New York

    Google Scholar 

  40. Heitler W, London F (1927) Zeit f Physik 44:455

    CAS  Google Scholar 

  41. Hoffmann MR, Datta D, Das S, Mukherjee D, Szabados A, Rolik Z, Surján PR (2009) J Chem Phys 131:204104

    PubMed  Google Scholar 

  42. http://www.top500.org Accessed on 25 Jan 2011

  43. http://www.google.com/sites/ Accessed on 25 Jan 2011

  44. http://www.google.com/sites/overview.html Accessed 25 Jan 2011

  45. Hubbard J (1957) Proc R Soc (London) A 240:539

    Google Scholar 

  46. Hubač I, Wilson S (2000) J Phys B: At Mol Opt Phys 33:365

    Google Scholar 

  47. Hubač I, Wilson S (2001) Adv Quantum Chem 39:209

    Google Scholar 

  48. Hubač I, Wilson S (2001) J Phys B: At Mol Opt Phys 34:4259

    Google Scholar 

  49. Hubač I, Wilson S (2003) In: von Ragué Schleyer P, Allinger NL, Schaefer HF III, Clark T, Gasteiger J, Kollman P, Schreiner P (eds) Encyclopedia of computational chemistry, electronic edn. Wiley, Chichester

    Google Scholar 

  50. Hubač I, Wilson S (2003) In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry – a tribute to the memory of Per-Olov Löwdin. Kluwer, Dordrecht

    Google Scholar 

  51. Hubač I, Wilson S (2010) Brillouin-Wigner methods for many-body systems. Progress in theoretical chemistry & physics, vol 21. Springer, Dordrecht/New York

    Google Scholar 

  52. Hubač I (1996) In: Tsipis CA, Popov VS, Herschbach DR, Avery JS (eds) New methods in quantum theory. NATO ASI series. Kluwer, Dordrecht, p 183

    Google Scholar 

  53. Hubač I, Neogrády P (1994) Phys Rev A50:4558

    Google Scholar 

  54. Hubač I, Pittner J, Čársky P (2000) J Chem Phys 112:8779

    Google Scholar 

  55. Hubač I, Mach P, Wilson S (2000) J Phys B: At Mol Opt Phys 33:4735

    Google Scholar 

  56. Hubač I, Mach P, Wilson S (2001) Adv Quantum Chem 39:225

    Google Scholar 

  57. Hubač I, Masarik J and Wilson S (2011) J Phys B: At Mol Opt Phys. 44:205201

    Google Scholar 

  58. Hugenholtz N (1957) Physica 23:481

    CAS  Google Scholar 

  59. Hurley AC (1976) Electron correlation in small molecules. Academic, London

    Google Scholar 

  60. Hyman RA (1982) Charles Babbage: pioneer of the computer. Oxford University Press, Oxford

    Google Scholar 

  61. Kaldor U (1973) Phys Rev A 7:427

    Google Scholar 

  62. Kaldor U, Wilson S (eds) (2003) Theoretical chemistry and physics of heavy and superheavy elements. Progress in theoretical chemistry and physics. Kluwer, Dordrecht

    Google Scholar 

  63. Kelly HP (1963) Phys Rev 131:684

    Google Scholar 

  64. Kelly HP (1964) Phys Rev A134:1450

    Google Scholar 

  65. Kelly HP (1964) Phys Rev B136:896

    Google Scholar 

  66. Kelly HP (1966) Phys Rev 144:39

    CAS  Google Scholar 

  67. Kelly HP (1968) Adv Theor Phys 2:75

    Google Scholar 

  68. Kelly HP (1969) Adv Chem Phys 14:129

    CAS  Google Scholar 

  69. Kelly HP (1969) Phys Rev Lett 23:255

    Google Scholar 

  70. Kelly HP (1970) Int J Quantum Chem Symp 3:349

    Google Scholar 

  71. Kelly HP (1970) Phys Rev A1:274

    Google Scholar 

  72. Kelly HP, Ron A (1971) Phys Rev A4:11

    Google Scholar 

  73. Kumar M (2008) Quantum – Einstein, Bohr and the great debate about the nature of reality. Icon, London

    Google Scholar 

  74. Lennard-Jones JE (1930) Proc R Soc (London) A 129:598

    CAS  Google Scholar 

  75. Lippmann BP, Schwinger J (1950) Phys Rev 79:469

    Google Scholar 

  76. Mach P, Mášik J, Urban J, Hubač I (1998) Mol Phys 94:173

    CAS  Google Scholar 

  77. Mahapatra US, Datta B, Bandyopadhyay B, Mukherjee D (1998) Adv Quantum Chem 30:163

    CAS  Google Scholar 

  78. Mahapatra US, Datta B, Mukherjee D (1999) J Phys Chem A 103:1822

    CAS  Google Scholar 

  79. Mahapatra US, Datta B, Mukherjee D (1999) Chem Phys Lett 299:42

    CAS  Google Scholar 

  80. Mahapatra US, Datta B, Mukherjee D (1999) J Chem Phys 110:6171

    CAS  Google Scholar 

  81. Mášik J, Hubač I (1997) Coll Czech Chem Commun 62:829

    Google Scholar 

  82. Mášik J, Hubač I (1997) In: McWeeny R, Maruani J, Smeyers YG, Wilson S (eds) Quantum systems in chemistry and physics: trends in methods and applications. Kluwer, Dordrecht, p 283

    Google Scholar 

  83. Mášik J, Hubač I (1998) Adv Quantum Chem 31:75

    Google Scholar 

  84. Mášik J, Mach P, Hubač I (1998) J Chem Phys 108:6571

    Google Scholar 

  85. Mášik J, Mach P, Urban J, Polasek M, Babinec P, Hubač I (1998) Collect Czech Chem Commun 63:1213

    Google Scholar 

  86. Mehra J, Rechenberg H (1982, 1987, 2000, 2001) The historical development of quantum theory, vol 6. Springer, Berlin

    Google Scholar 

  87. Moore GE (1965, April 19) Electronics 38(8):114–117

    Google Scholar 

  88. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  89. Moncrieff D, Wilson S (2012) Universal Gaussian basis sets for molecular electronic structure theory. Progress in theoretical chemistry & physics, Springer, Dordrecht/New York

    Google Scholar 

  90. Paldus J (1992) In: Wilson S, Diercksen GHF (eds) Methods in computational molecular physics. NATO ASI series. Plenum Press, New York, p 99ff

    Google Scholar 

  91. Paldus J (1994) In: Malli GL (ed) Relativistic and correlation effects in molecules and solids, NATO ASI series. Plenum, New York, p 207

    Google Scholar 

  92. Paldus J (2002) In: Wilson S, Bernath PF, McWeeny R (eds) Handbook of molecular physics and quantum chemistry, vol 2. Wiley, Chichester

    Google Scholar 

  93. Paldus J, Čížek J, Shavitt I (1972) Phys Rev A 5:50

    Google Scholar 

  94. Petraco NDK, Hornyý L, Schaefer HF, Hubač I (2002) J Chem Phys 117:9580

    CAS  Google Scholar 

  95. Pittner J (2003) J Chem Phys 118:10876

    CAS  Google Scholar 

  96. Pittner J, Nechtigall P, Čársky P, Mášik J, Hubač I (1999) J Chem Phys 110:10275

    CAS  Google Scholar 

  97. Quiney HM, Grant IP, Wilson S (1989) In: Kaldor U (ed) Many-body methods in quantum chemistry. Lecture notes in chemistry, vol 52. Springer, Berlin, p 307

    Google Scholar 

  98. Quiney HM, Hubač I, Wilson S (2001) J Phys B: At Mol Opt Phys 34:4323

    CAS  Google Scholar 

  99. Renn J (2005) Ann Phys 14(Supplement):23

    Google Scholar 

  100. Roberts JM (1999) Twentieth century: the history of the world – 1901 to present. Allen Lane/The Penguin, London

    Google Scholar 

  101. Rutherford E (1911) Phil Mag 21:669

    CAS  Google Scholar 

  102. Sancho-García J, Pittner J, Čársky P, Hubač I (2000) J Chem Phys 112:8785

    Google Scholar 

  103. Schaefer HF, Horný L, Hubač I, Pal S (2005) Chem Phys 315:240

    Google Scholar 

  104. Schulman JM, Kaufman DN (1970) J Chem Phys 53:477

    CAS  Google Scholar 

  105. Wenzel W, Steiner MM (1998) J Chem Phys 108:4714

    CAS  Google Scholar 

  106. Wenzel W (1998) Int J Quantum Chem 70:613

    CAS  Google Scholar 

  107. Wigner EP (1935) Math naturw Anz ungar Akad Wiss 53:475

    Google Scholar 

  108. Wilson S (1987) Chemistry by computer. An overview of the applications of computers in chemistry. Plenum, New York

    Google Scholar 

  109. Wilson S (ed) (1987, 1989, 1990, 1992, 1993) Methods in computational chemistry, vol 1, 2, 3, 4, 5. Plenum, New York

    Google Scholar 

  110. Wilson S (2003) In: Wilson S, Bernath PF, McWeeny R (eds) Handbook of molecular physics and quantum chemistry, vol 2. Wiley, Chichester

    Google Scholar 

  111. Wilson S (1983) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  112. Wilson S (1992) In: Methods in computational molecular physics. NATO ASI series B, vol 293. Plenum, New York, p 222

    Google Scholar 

  113. Wilson S (2000) In: Chemical modelling: applications and theory. Senior reporter: A. Hinchliffe, Specialist periodical reports, vol 1. The Royal Society of Chemistry, London, p 364

    Google Scholar 

  114. Wilson S (2001) J Mol Struct Theochem 547:279

    CAS  Google Scholar 

  115. Wilson S (2002) In: Hinchliffe A (ed) Chemical modelling: applications and theory. Specialist periodical reports, vol 2. The Royal Society of Chemistry, London, p 329

    Google Scholar 

  116. Wilson S (2002) In: Wilson S, Bernath PF, McWeeny R (ed) Handbook of molecular physics and quantum chemistry, vol 2. Wiley, Chichester

    Google Scholar 

  117. Wilson S (2004) In: Hinchliffe A (ed) Chemical modelling: applications and theory. Specialist periodical reports, vol 3. The Royal Society of Chemistry, London, p 379

    Google Scholar 

  118. Wilson S (2006) In: Hinchliffe A (ed) Chemical modelling: applications and theory. Specialist periodical reports, vol 4. The Royal Society of Chemistry, London, p 470

    Google Scholar 

  119. Wilson S (2007) Electron correlation in molecules. Dover, New York

    Google Scholar 

  120. Wilson S (2008) In: Chemical modelling: applications and theory. Hinchliffe A (ed) Specialist periodical reports, vol 5. The Royal Society of Chemistry, London, p 208

    Google Scholar 

  121. Wilson S, Hubač I (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 18. p 561

    Google Scholar 

  122. Wilson S, Silver DM (1976) Phys Rev A 14:1949

    CAS  Google Scholar 

  123. Wilson S, Bernath PF, McWeeny R (eds) (2003) In: Handbook of molecular physics and quantum chemistry, vol 3. Wiley, Chichester

    Google Scholar 

  124. Wilson S, Hubač I, Mach P, Pittner J, Čársky P (2003) In: Maruani J, Lefebvre R, Brändas EJ (eds) Advanced topics in theoretical chemical physics. Progress in theoretical chemistry & physics, vol 12. p 71

    Google Scholar 

  125. Ziman J (1976) The force of knowledge. The scientific dimension of society. Cambridge University Press, Cambridge, pp 90–91

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the APVV Grant Agency, Slovakia, under project numbers -0420-10 and -0442-07 and also VEGA Grant Agency, Slovakia, under project number -1/0762/11. IH thanks the Grant Agency of the Czech Republic under project number MSM 4781305903.

Note added in proof: Recent research has shown how the many-body Brillouin-Wigner formalism can be deployed in the study of electron-molecule scattering [57].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Hubač .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hubač, I., Wilson, S. (2011). Many-Body Brillouin-Wigner Theories: Development and Prospects. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_2

Download citation

Publish with us

Policies and ethics