Skip to main content

Computational Approaches Towards Modeling Finite Molecular Assemblies: Role of Cation-π, π–π and Hydrogen Bonding Interactions

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry I

Abstract

The current review focuses on theoretical approaches for various kinds of noncovalent interactions such as cation-π, π–π stacking, and hydrogen bonding which govern the formation of finite molecular assemblies. Cation-π interactions were shown to be arguably the strongest of noncovalent interactions through a series of systematic computations and their comparison with experiments. The major factors affecting cation-π interaction, including the role of solvation, nature and size of systems and regioselectivity for cation attack have been discussed using theoretical studies. The mutual dependence of cation-π interactions with the neighboring non bonded interactions, such as stacking and hydrogen bonding has been explained. Cooperativity in systems containing cation-π interactions has been quantified. Relevance of cation-π and π–π interactions in function and structure of biological molecules and materials has also been dealt with. The role of quantum chemical calculations and molecular dynamics simulations in understanding the structure and energetics of nonbonded interactions is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Special Issue: 90 years of chemical bonding (2007) J Comput Chem 28:1–466, 411–350

    Google Scholar 

  2. van der Waals JD (1873) Over de Continuiteit van den Gas- en Vloeistoftoestand (on the continuity of the gas and liquid state) Doctoral dissertation, Leiden, Holland

    Google Scholar 

  3. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Nature 405:681–685

    CAS  PubMed  Google Scholar 

  4. Buhler E, Candau SJ, Schmidt J, Talmon Y, Kolomiets E, Lehn JM (2007) J Polym Sci: Part B: Polym Phys 45:103–115

    CAS  Google Scholar 

  5. Dougherty DA (1996) Science 271:163–168

    CAS  PubMed  Google Scholar 

  6. Mecozzi S, West AP Jr, Dougherty DA (1996) Proc Natl Acad Sci USA 93:10566–10571

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324

    CAS  PubMed  Google Scholar 

  8. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459–9464

    CAS  PubMed  PubMed Central  Google Scholar 

  9. (a) Bindu PH, Sastry GM, Murty US, Sastry GN (2004) Biochem Biophys Res Commun 319:312–320; (b) Bindu PH, Sastry GM, Sastry GN (2004) Biochem Biophys Res Commun 320:461–467

    CAS  PubMed  Google Scholar 

  10. Chourasia M, Sastry GM, Sastry GN (2005) Biochem Biophys Res Commun 336:961–966

    CAS  PubMed  Google Scholar 

  11. Zondlo NJ (2010) Nat Chem Biol 6:567–568

    CAS  PubMed  Google Scholar 

  12. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4097

    CAS  PubMed  Google Scholar 

  13. (a) Hasenknopf B, Lehn JM, Kneisel BO, Baum G, Fenske D (1996) Angew Chem Int Ed 35:1838–1840; (b) Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Google Scholar 

  14. Breuning E, Hanan GS, Romero-Salgeuro FJ, Garcia AM, Baxter PNW, Lehn JM, Wegelius E, Rissanen K, Nierengarten H, van Dorsselaer A (2002) Chem Eur J 8:3458–3466

    CAS  PubMed  Google Scholar 

  15. Douglas T, Young M (1998) Nature 393:152–155

    CAS  Google Scholar 

  16. Meissner RS, Rebek J Jr, de Mendoza J (1995) Science 270:1485–1488

    CAS  PubMed  Google Scholar 

  17. Roman M, Cannizzo C, Pinault T, Isare B, Andrioletti B, van der Schoot P, Bouteiller L (2010) J Am Chem Soc 132:16818–16824

    CAS  PubMed  Google Scholar 

  18. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) Chem Rev 105:1491–1546

    CAS  PubMed  Google Scholar 

  19. Davis AV, Yeh RM, Raymond KN (2002) Proc Natl Acad Sci USA 99:4793–4796

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider H, Strongin RM (2009) Acc Chem Res 42:1489–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hobza P, Sponer J (1999) Chem Rev 99:3247–3276

    CAS  PubMed  Google Scholar 

  22. Mller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–168

    Google Scholar 

  23. Hobza P, Zahradnik R, Mller-Dethlefs K (2006) Collect Czech Chem Commun 71:443–531

    CAS  Google Scholar 

  24. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145–4185

    CAS  PubMed  Google Scholar 

  25. Gokel GW, De Wall SL, Meadows ES (2000) Eur J Org Chem 2967–2978

    Google Scholar 

  26. Wheeler SE, Houk KN (2009) J Am Chem Soc 131:3126–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cerny J, Hobza P (2007) Phys Chem Chem Phys 9:5291–5303

    CAS  PubMed  Google Scholar 

  28. Sherill CD, Takatani T, Hohenstein EG (2009) J Phys Chem A 113:10146–10159

    Google Scholar 

  29. Desiraju GR (2002) Acc Chem Res 35:565–573

    CAS  PubMed  Google Scholar 

  30. Zaric SD (2003) Eur J Inorg Chem 2197–2209

    Google Scholar 

  31. Hong BH, Bae SC, Lee CW, Jeong S, Kim KS (2001) Science 294:348–351

    CAS  PubMed  Google Scholar 

  32. Hong BH, Lee JY, Lee CW, Kim JC, Bae SC, Kim KS (2001) J Am Chem Soc 123:10748–10749

    CAS  PubMed  Google Scholar 

  33. Gu J, Leszczynski J (2001) J Phys Chem A 105:10366–10371

    CAS  Google Scholar 

  34. Gu J, Leszczynski J (2000) J Phys Chem A 104:6308–6313

    CAS  Google Scholar 

  35. Ryzhov V, Dunbar RC, Cerda B, Wesdemiotis C (2000) J Am Soc Mass Spectrom 11:1037–1046

    CAS  PubMed  Google Scholar 

  36. Rodgers MT, Armentrout PB (2004) Acc Chem Res 37:989–998

    CAS  PubMed  Google Scholar 

  37. Zhu W, Luo X, Puah CM, Tan X, Shen J, Gu J, Chen K, Jiang H (2004) J Phys Chem A 108:4008–4018

    CAS  Google Scholar 

  38. Sponer J, Burda JV, Sabat M, Leszczynski J, Hobza P (1998) J Phys Chem A 102:5951–5957

    CAS  Google Scholar 

  39. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2004) Chem Phys Lett 392:85–89

    CAS  Google Scholar 

  40. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) J Am Chem Soc 122:3746–3753

    CAS  Google Scholar 

  41. Ikuta S (2000) J Mol Struct (THEOCHEM) 530:201–207

    CAS  Google Scholar 

  42. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893–8903

    CAS  PubMed  Google Scholar 

  43. Rao JS, Sastry GN (2009) J Phys Chem A 113:5446–5454

    CAS  PubMed  Google Scholar 

  44. Vijay D, Sastry GN (2006) J Phys Chem A 110:10148–10154

    CAS  PubMed  Google Scholar 

  45. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582–590

    CAS  PubMed  Google Scholar 

  46. Priyakumar UD, Punnagai M, Krishna Mohan GP, Sastry GN (2004) Tetrahedron 60:3037–3043

    CAS  Google Scholar 

  47. Reddy AS, Zipse H, Sastry GN (2007) J Phys Chem B 111:11546–11553

    CAS  PubMed  Google Scholar 

  48. Rao JS, Zipse H, Sastry GN (2009) J Phys Chem B 113:7225–7236

    CAS  PubMed  Google Scholar 

  49. Sharma B, Rao JS, Sastry GN (2011) J Phys Chem A 115:1971–1984

    CAS  PubMed  Google Scholar 

  50. Rao JS, Dinadayalane TC, Sastry GN, Leszczynski J (2008) J Phys Chem A 112:12944–12953

    CAS  PubMed  Google Scholar 

  51. Mahadevi AS, Sastry GN (2011) J Phys Chem B 115:703–710

    CAS  PubMed  Google Scholar 

  52. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    CAS  Google Scholar 

  53. Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., Wallingford

    Google Scholar 

  54. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  55. Dinadayalane TC, Sastry GN, Leszczynski J (2006) Int J Quant Chem 106:2920–2933

    CAS  Google Scholar 

  56. Kumar MK, Rao JS, Prabhakar S, Vairamani M, Sastry GN (2005) Chem Commun 1420–1422

    Google Scholar 

  57. Rao JS, Sastry GN (2006) Int J Quant Chem 106:1217–1224

    CAS  Google Scholar 

  58. Siu FM, Ma NL, Tsang CW (2004) Chem Eur J 10:1966–1976

    CAS  PubMed  Google Scholar 

  59. (a) Allen FH (2002) Acta Crystallogr Sect B 58:380–388; (b) Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Google Scholar 

  60. Biot C, Buisine E, Kwasigroch JM, Wintjens R, Rooman M (2002) J Biol Chem 227:40816–40822

    Google Scholar 

  61. Reddy AS, Sastry GM, Sastry GN (2007) Proteins Struct Funct Bioinform 67:1179–1184

    CAS  Google Scholar 

  62. Gallivan JP, Dougherty DA (2000) J Am Chem Soc 122:870–874

    CAS  Google Scholar 

  63. Vaden TD, Lisy MJ (2004) J Chem Phys 120:721–730

    CAS  PubMed  Google Scholar 

  64. Adamo C, Berthier G, Savinelli R (2004) Theor Chem Acc 111:176–181

    CAS  Google Scholar 

  65. Dzidic I, Kebarle PJ (1970) J Phys Chem 74:1466–1474

    CAS  Google Scholar 

  66. Rodriguez-Cruz SE, Jockusch RA, Williams ER (1998) J Am Chem Soc 120:5842–5843

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rodgers MT, Armentrout PB (1997) J Phys Chem A 101:1238–1249

    CAS  Google Scholar 

  68. Carl DR, Moision RM, Armentrout PB (2007) Int J Mass Spectrom 265:308–325

    CAS  Google Scholar 

  69. Lee HM, Tarakeshwar P, Park J, Kołaski MR, Yoon YJ, Yi HB, Kim WY, Kim KS (2004) J Phys Chem A 108:2949–2958

    CAS  Google Scholar 

  70. Merrill GN, Webb SP, Bivin DB (2003) J Phys Chem A 107:386–396

    CAS  Google Scholar 

  71. Pavlov M, Siegbahn PEM, Sandstrom M (1998) J Phys Chem A 102:219–228

    CAS  Google Scholar 

  72. Glendening ED, Feller D (1995) J Phys Chem 99:3060–3067

    CAS  Google Scholar 

  73. Jennings WB, Farrell BM, Malone JF (2001) Acc Chem Res 34:885–894

    CAS  PubMed  Google Scholar 

  74. Pallan PS, Lubini P, Egli M (2007) Chem Commun 1447–1449

    Google Scholar 

  75. Mehta G, Sen S, Guru Row TN, Chopra D, Chattopadhyay S (2008) Eur J Org Chem 2008:805–815

    Google Scholar 

  76. Sponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595–2610

    CAS  PubMed  Google Scholar 

  77. Bradeanu IL, Flesch R, Kosugi N, Pavlychev AA, Rühl E (2006) Phys Chem Chem Phys 8:1906–1913

    CAS  PubMed  Google Scholar 

  78. McGaughey GB, Gagne M, Rappe AK (1998) J Biol Chem 273:15458–15463

    CAS  PubMed  Google Scholar 

  79. Frank BS, Vardar D, Buckley DA, McKnight CJ (2002) Protein Sci 11:680–687

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

    CAS  PubMed  Google Scholar 

  81. Sinnokrot MO, Sherrill CD (2006) J Phys Chem A 110:10656–10668

    CAS  PubMed  Google Scholar 

  82. (a) Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) J Phys Chem B 110:2479–2481; (b) Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) J Phys Chem B 110:10206–10207

    CAS  PubMed  Google Scholar 

  83. Johnson ER, Mackie ID, Dilabio GA (2009) J Phys Org Chem 22:1127–1135

    CAS  Google Scholar 

  84. Min SK, Lee EC, Lee HM, Kim DY, Kim D, Kim KS (2008) J Comput Chem 29:1208–1221

    CAS  PubMed  Google Scholar 

  85. Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790–18794

    CAS  Google Scholar 

  86. Tsuzuki S, Uchimaru T, Matsumara K, Mikami M, Tanabe K (2000) Chem Phys Lett 319:547–554

    CAS  Google Scholar 

  87. Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207

    CAS  Google Scholar 

  88. Gadre SR, Shirsat RN, Limaye AC (1994) J Phys Chem 98:9165–9169

    CAS  Google Scholar 

  89. Gerenkamp M, Grimme S (2004) Chem Phys Lett 392:229–235

    CAS  Google Scholar 

  90. Grimme S (2003) J Chem Phys 20:9095–9102

    Google Scholar 

  91. Vijay D, Sakurai H, Sastry GN (2011) Int J Quant Chem 111:1893–1901

    Article  CAS  Google Scholar 

  92. Liu B, McLean AD (1973) J Chem Phys 59:4557

    CAS  Google Scholar 

  93. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 432:33–39

    CAS  Google Scholar 

  94. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873–1885

    Google Scholar 

  95. Xantheas SS (1996) J Chem Phys 104:8821–8824

    CAS  Google Scholar 

  96. Rayon VM, Sordo JA (1998) Theor Chem Acc 99:68–70

    CAS  Google Scholar 

  97. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 24:11024–11031

    Google Scholar 

  98. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893

    CAS  PubMed  Google Scholar 

  99. Hobza P, Havlas Z (1998) Theor Chem Acc 99:372–377

    CAS  Google Scholar 

  100. Hermida-Ramón JM, Grańa AM (2007) J Comput Chem 28:540–546

    PubMed  Google Scholar 

  101. Berski S, Latajka Z (1996) Comput Chem 21:347–354

    Google Scholar 

  102. Kolář M, Hobza P (2007) J Phys Chem A 111:5851–5854

    PubMed  Google Scholar 

  103. Saeki M, Akagi H (2006) J Chem Theor Comput 2:1176–1183

    CAS  Google Scholar 

  104. Sakurai H, Daiko T, Sakane H, Amaya T (2005) J Am Chem Soc 127:11580–11581

    CAS  PubMed  Google Scholar 

  105. Kawase T, Kurata H (2006) Chem Rev 106:5250–5273

    CAS  PubMed  Google Scholar 

  106. Chourasia M, Sastry GM, Sastry GN (2011) Int J Biol Macromol 48:540–552

    Article  CAS  Google Scholar 

  107. Espinosa E, Molins E (2000) J Chem Phys 113:5686–5694

    CAS  Google Scholar 

  108. Sunita SS, Rohini NK, Kulkarni MG, Nagaraju M, Sastry GN (2006) J Am Chem Soc 128:7752–7753

    Google Scholar 

  109. Maheshwary S, Patel P, Sathyamurthy N, Kulkarni AD, Gadre SR (2001) J Phys Chem A 105:10525–10537

    CAS  Google Scholar 

  110. (a) Neela YI, Mahadevi AS, Sastry GN (2010) J Phys Chem B 114:17162–17171; (b) Mahadevi AS, Neela YI, Sastry GN (2011) J Chem Sci (accepted); (c) Mahadevi AS, Neela YI, Sastry GN (2011) Phys Chem Chem Phys 13:15211–15220

    Google Scholar 

  111. Barbour LJ, Orr GW, Atwood JL (1998) Nature 39:671–673

    Google Scholar 

  112. Wales DJ, Doye JPK, Dullweber A, Naumkin FY (1997) The Cambridge cluster database. http://brian.ch.cam.ac.uk/CCD.html

  113. Nagaraju M, Sastry GN (2010) Int J Quant Chem 110:1994–2003

    CAS  Google Scholar 

  114. Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118

    CAS  PubMed  Google Scholar 

  115. Ogata RT, McConnell HM (1971) Proc Natl Acad Sci USA 69:335–339

    Google Scholar 

  116. Acerenza L, Mizraji E (1997) Biochim et Biophys Avta 1339:155–166

    CAS  Google Scholar 

  117. Frank HS, Wen WY (1957) Discuss Faraday Soc 24:133

    Google Scholar 

  118. Hyskens PL (1977) J Am Chem Soc 99:2578–2582

    Google Scholar 

  119. Elrod MJ, Saykally RJ (1994) Chem Rev 94:2578–2582

    Google Scholar 

  120. Suhai S (1994) J Chem Phys 101:9766–9782

    CAS  Google Scholar 

  121. (a) Kobko N, Paraskevas L, Rio E, Dannenberg JJ (2001) 123:4348–4349; (b) Turi L, Dannenberg JJ (1994) J Am Chem Soc 116:8714–8721; (c) Masunov A, Dannenberg JJ (2000) J Phys Chem B 104:806–810; (d) Turi L, Dannenberg JJ (1996) J Phys Chem 100:9638–9648

    Google Scholar 

  122. Vijay D, Zipse H, Sastry GN (2008) J Phys Chem B 112:8863–8867

    CAS  PubMed  Google Scholar 

  123. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235–242

    CAS  Google Scholar 

  124. Mahadevi AS, Rahalkar AP, Gadre SR, Sastry GN (2010) J Chem Phys 133:164308

    PubMed  Google Scholar 

  125. Kobko N, Dannenberg JJ (2003) J Phys Chem A 107:10389–10395

    CAS  Google Scholar 

  126. Jiang X, Sun C, Wang C (2009) J Comp Chem 31:410–1420

    Google Scholar 

  127. Esrafili MD, Behzadi H, Hadipour NL (2008) Theor Chem Acc 121:135–146

    CAS  Google Scholar 

  128. Rappé AK, Bernstein ER (2000) J Phys Chem A 104:6117–6128

    Google Scholar 

  129. Steele RP, DiStasio RA, Shao Y, Kong J, Head-Gordon M (2006) J Chem Phys 125:074108–074111

    PubMed  Google Scholar 

  130. Noguera M, Bertran J, Sodupe M (2004) J Phys Chem A 108:333–341

    CAS  Google Scholar 

  131. Zhao Y, Truhlar DG (2007) J Chem Theor Comput 3:289–300

    CAS  Google Scholar 

  132. Bachorz RA, Bischoff FA, Höfener S, Klopper W, Ottiger P, Leist R, Frey JA, Leutwyler S (2008) Phys Chem Chem Phys 10:2758–2766

    CAS  PubMed  Google Scholar 

  133. Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, Sun X (2011) Angew Chem Int Ed 50:422–426

    CAS  Google Scholar 

  134. Peterca M, Percec V, Imam MR, Leowanawat P, Morimitsu K, Heiney PA (2008) J Am Chem Soc 130:14840–14852

    CAS  PubMed  Google Scholar 

  135. Balamurugan K, Gopalakrishnan R, Sundar Raman S, Subramanian V (2010) J Phys Chem B 114:14048–14058

    CAS  PubMed  Google Scholar 

  136. Nagaraju M, Sastry GN (2009) J Phys Chem A 113:9533–9542

    CAS  PubMed  Google Scholar 

  137. Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic VR, Markovic NM (2009) Nat Chem 1:466–472

    CAS  PubMed  Google Scholar 

  138. Umadevi D, Sastry GN (2011) J Phys Chem C 115:9656–9667

    CAS  Google Scholar 

  139. Karplus M, McCammon JA (2002) Nat Struct Biol 9:646–651

    CAS  PubMed  Google Scholar 

  140. van Gunsteren WF, Berendsen HJC (1990) Angew Chem Int Ed 29:992–1023

    Google Scholar 

  141. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    CAS  PubMed  Google Scholar 

  142. CPMD Version 3.3 (1995–1999) developed by Hutter J, Alavi A, Deutsch T, Bernasconi M, Goedecker St, Marx D, Tuckerman M, Parrinello M Max-Planck-Institut für Festkörperforschung and IBM Zurich Research Laboratory

    Google Scholar 

  143. Grimme S (2006) J Comput Chem 27:1787–1799

    CAS  PubMed  Google Scholar 

  144. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045–1097

    CAS  Google Scholar 

  145. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Google Scholar 

  146. VASP, Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Google Scholar 

  147. Dudev T, Lim C (2008) Annu Rev Biophys 37:97–116

    CAS  PubMed  Google Scholar 

  148. Barman A, Taves W, Prabhakar R (2009) J Comput Chem 30:1405–1413

    CAS  PubMed  Google Scholar 

  149. Thoden JB, Miran SG, Phillips JC, Howard AJ, Raushel FM, Holden HM (1998) Biochemistry 37:8825–8831

    CAS  PubMed  Google Scholar 

  150. (a) Genis C, Sippel KH, Case N, Cao W, Avvaru BS, Tartaglia LJ, Govindasamy L, Tu C, McKenna MA, Silverman DN, Rosser CJ, McKenna R (2009) Biochemistry 48:1322–1331; (b) Vallee BL, Auld DS (1990) Proc Natl Acad Sci USA 87:220–224

    CAS  PubMed  Google Scholar 

  151. (a) D’Alessandro M, Aschi M, Paci M, Nola AD, Amadei A (2004) J Phys Chem B 108:16255–16260; (b) Pelmenschikov V, Siegbahn EM (2005) Inorg Chem 44:3311–3320

    Google Scholar 

  152. Katouno F, Taguchi M, Sakurai K, Uchiyama T, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2004) J Biochem 136:163–168

    CAS  PubMed  Google Scholar 

  153. Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, Short S, Stuart DI, Stammers DK (2001) J Mol Biol 312:795–805

    CAS  PubMed  Google Scholar 

  154. (a) Janardhan S, Srivani P, Sastry GN (2006) Curr Med Chem 13:1169–1186; (b) Janardhan S, Srivani P, Sastry GN (2006) QSAR Comb Sci 25:860–872

    CAS  PubMed  Google Scholar 

  155. (a) Badrinarayan P, Sastry GN (2011) J Chem Inf Model 51:115–129; (b) Soliva R, Gelpi JL, Almansa C, Virgoli M, Orozco M (2007) J Med Chem 50:283–293

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GNS acknowledges financial support from Department of Science and Technology (DST) New Delhi through its Swarnajayanthi fellowship, ASM is grateful to DST for financial support under its Woman Scientist Scheme (WOS-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mahadevi, A.S., Sastry, G.N. (2011). Computational Approaches Towards Modeling Finite Molecular Assemblies: Role of Cation-π, π–π and Hydrogen Bonding Interactions. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_18

Download citation

Publish with us

Policies and ethics