Skip to main content

High Levels of Vanadium in Ascidians

  • Chapter
  • First Online:
Vanadium

Abstract

Henze’s discovery of high levels of vanadium in an ascidian was not only a trigger for research in vanadium science, but also aroused great interest in the question of how such extraordinarily high levels of vanadium could be accumulated and what the role of vanadium in ascidians could possibly be. Many investigators, including inorganic, catalytic, and applied chemists, as well as physiological, molecular, and pharmaceutical biologists have been involved in this interdisciplinary problem. In this review, we not only trace the history of vanadium research, but also describe recent advances in our understanding of the field from several viewpoints: the determination of high levels of vanadium, the identification of vanadium-accumulating blood cells, the energetics of vanadium accumulation, the sulfate transport system, the redox mechanism of vanadium, and the possible physiological roles of vanadium in ascidians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henze M (1911) Unterschungen über das Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Bluktkörperchen. Hoppe Seyler Z Physiol Chem 72:494–501

    CAS  Google Scholar 

  2. Fantini B (2000) The “Stazione Zoologica Anton Dohrn” and the history of embryology. Int J Dev Biol 44:523–535

    CAS  Google Scholar 

  3. Henze M (1912) Unterschungen über das Blut der Ascidien. II. Mitteilung. Hoppe Seyler Z Physiol Chem 79:215–228

    Google Scholar 

  4. Henze M (1913) Über das Vorkommen freier Schwefelsäure im Mantel von Ascidia mentula. Hoppe Seyler Z Physiol Chem 88:345–346

    Google Scholar 

  5. Henze M (1932) Über das Vanadiumchromogen des Ascidienblutes. Hoppe Seyler Z Physiol Chem 213:125–135

    CAS  Google Scholar 

  6. Califano L, Caselli P (1948) Ricerche sulla emovanadina. I. Dimostrazione di una proteina. Publ Staz Zool Napoli 21:261–271

    Google Scholar 

  7. Bielig HJ, Jost E, Pfleger K, Rummel W (1961) Sulfataufnahme bei Phallucia mammillata Cuvier. Verteilung und Schicksal von Sulfat-und Aminosäure-Schwefel im Blut (Untersuchumgen über Hämovanadin, VI). Hoppe-Seyler’s Z Physiol Chem 325:132–145

    CAS  Google Scholar 

  8. Michibata H, Terada T, Anada N, Yamakawa K, Numakunai T (1986) The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biol Bull 171: 672–681

    CAS  Google Scholar 

  9. Michibata H, Iwata Y, Hirata J (1991) Isolation of highly acidic and vanadium-containing blood cells from among several types of blood cells in Ascidiidae species by density-gradient centrifugation. J Exp Zool 257:306–313

    Google Scholar 

  10. Wright RK (1981) Urochordata. In: Ratcliffe NA, Rowley AF (eds) Invertebrata blood cells, vol 2. Academic, London, pp 565–626

    Google Scholar 

  11. Webb DA (1939) Observations on the blood of certain ascidians, with special reference to the biochemistry of vanadium. J Exp Biol 16:499–523

    CAS  Google Scholar 

  12. Endean R (1960) The blood cells of ascidian, Phallusia mammillata (Heller). Q J Microsc Sci 107:177–197

    Google Scholar 

  13. Kalk M (1963) Cytoplasmic transmission of a vanadium compound in a tunicate oocyte, visible with electronmicroscopy. Acta Embryol Morph Exp 6:289–303

    Google Scholar 

  14. Kalk M (1963) Cytoplasmic transmission of a vanadium compound in a tunicate oocyte, visible with electron microscopy. Acta Embryol Morph Exp 6:289–303

    Google Scholar 

  15. Kustin K, Levine DS, McLeod GC, Curby WA (1976) The blood of Ascidia nigra: blood cell frequency distribution, morphology, and the distribution and valence of vanadium in living blood cells. Biol Bull 150:426–441

    CAS  Google Scholar 

  16. Michibata H, Hirata J, Uesaka M, Numakunai T, Sakurai H (1987) Separation of vanadocytes: determination and characterization of vanadium ion in the separated blood cells of the ascidian, Ascidia sydneiensis samea. J Exp Zool 244:33–38

    CAS  Google Scholar 

  17. Nette G, Scippa S, Genovese M, de Vincentiis M (1999) Cytochemical localization of vanadium(III) in blood cells of ascidian Phallusia mammillata Cuvier, and its relevance to hematic cell lineage determination. Comp Biochem Biophys Part C 122:231–237

    CAS  Google Scholar 

  18. Takemoto K, Yamamoto A, Michibata H, Uyama T, Ueki T, Ikeda S, Kihara H (2000) Observation of blood cells of the ascidian, Phallusia nigra, with X-ray microscope. Mem SR Center Rit- sumeikan Univ 2000:71–77

    Google Scholar 

  19. Susini J, Barrett R (1996) The X-ray microscopy facility project at the ESRF. In: Thieme J, Schmahl G, Umbach E (eds) X-ray microscopy and spectromicroscopy. Springer, Wuerzburg, pp I45–I54

    Google Scholar 

  20. Susini J, Barrett R, Kaulich B, Oestreich S, Salomé M (2000) The X- ray microscopy facility at the ESRF: a status report. In: Meyer-Ilse W, Warwick T, Attwood D (eds) X-ray microscopy. Proceeding of the sixth international conference. American Institute of Physics, Melville, pp 19–26

    Google Scholar 

  21. Ueki T, Takemoto K, Fayard B, Salome M, Yamamoto A, Kihara H, Susini J, Scippa S, Uyama T, Michibata H (2002) Scanning x-ray microscopy of living and freeze-dried blood cells in two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea. Zool Sci 19:27–35

    Google Scholar 

  22. Cole PC, Eckert JM, Williams KL (1983) The determination of dissolved and particular vanadium in sea water by X-ray fluorescence spectrometry. Anal Chim Acta 153:61–67

    CAS  Google Scholar 

  23. Collier RW (1984) Particular and dissolved vanadium in the North Pacific Ocean. Nature 309:441–444

    CAS  Google Scholar 

  24. Lybing S (1953) The valence of vanadium in hemolysates of blood from Ascidia obliqua. Alder Arkiv Kemi 6:261–269

    CAS  Google Scholar 

  25. Bielig HJ, Bayer E, Califano L, Wirth L (1954) The vanadium-containing blood pigment. II. Hemovanadin, a sulfate complex of trivalent vanadium. Publ Staz Zool Napoli 25:26–66

    CAS  Google Scholar 

  26. Boeri E, Ehrenberg A (1954) On the nature of vanadium in vanadocytes hemolysate from ascidians. Arch Biochem Biophys 50:404–416

    CAS  Google Scholar 

  27. Webb DA (1956) The blood of tunicates and the biochemistry of vanadium. Publ Staz Zool Napoli 28:273–288

    CAS  Google Scholar 

  28. Tullius TD, Gillum WO, Carlson RM, Hodgson KO (1980) Structural study of the vanadium complex in living ascidian blood cells by X-ray absorption spectrometry. J Am Chem Soc 102:5670–5676

    CAS  Google Scholar 

  29. Dingley AL, Kustin K, Macara IG, McLeod GC (1981) Accumulation of vanadium by tunicate blood cells occurs via a specific anion transport system. Biochim Biophys Acta 649:493–502

    CAS  Google Scholar 

  30. Frank P, Carlson RM, Hodgson KO (1986) Vanadyl ion EPR as a non-invasive probe of pH in intact vanadocytes from Ascidia ceratodes. Inorg Chem 25:470–478

    CAS  Google Scholar 

  31. Lee S, Kustin K, Robinson WE, Frankel RB, Spartalian K (1988) Magnetic properties of tunicate blood cells. I. Ascidia nigra. Inorg Biochem 33:183–192

    CAS  Google Scholar 

  32. Hirata J, Michibata H (1991) Valency of vanadium in the vanadocytes of Ascidia gemmata separated by density-gradient centrifugation. J Exp Zool 257:160–165

    CAS  Google Scholar 

  33. Bruening RC, Oltz EM, Furukawa J, Nakanishi K, Kustin K (1985) Isolation and structure of tunichrome B-1, a reducing blood pigment from the tunicate Ascidia nigra (Linnaeus). J Am Chem Soc 107:5298–5300

    CAS  Google Scholar 

  34. Ryan DE, Grant KB, Nakanishi K, Frank P, Hodgson KO (1996) Reactions between vanadium ions and biogenic reductants of tunicates: spectroscopic probing for complexation and redox products in vitro. Biochemistry 35:8651–8661

    CAS  Google Scholar 

  35. Frank P, Hedman B, Carlson RMK, Tyson TA, Roe AL, Hodgson KO (1987) Large reservoir of sulfate and sulfonate residues within plasma cells from Ascidia ceratodes, revealed by X-ray absorption near-edge structure spectrometry. Biochemistry 26:4975–4979

    CAS  Google Scholar 

  36. Uyama T, Yamamoto K, Kanamori K, Michibata H (1998) Glucose-6-phosphate dehydrogenase in the pentose phosphate pathway is localized in vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 15:441–446

    CAS  Google Scholar 

  37. Uyama T, Kinoshita T, Takahashi H, Satoh N, Kanamori K, Michibata H (1988) 6-Phosphogluconate dehydrogenase is a 45-kDa antigen recognized by S4D5, a monoclonal antibody specific to vanadocytes in the vanadium-rich ascidian, Ascidia sydneiensis samea. J Biochem 124:377–382

    Google Scholar 

  38. Uyama T, Ueki T, Suhama Y, Kanamori K, Michibata H (1998) A 100-kDa antigen recognized by a newly prepared monoclonal antibody specific to the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea, is glycogen phosphorylase. Zool Sci 15:815–821

    CAS  Google Scholar 

  39. Ueki T, Uyama T, Yamamoto K, Kanamori K, Michibata H (2000) Exclusive expression of transketolase in the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1494:83–90

    CAS  Google Scholar 

  40. Kawakami N, Ueki T, Amata Y, Kanamori K, Matsuo K, Gekko K, Michibata H (2009) A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochim Biophys Acta 1794:674–679

    CAS  Google Scholar 

  41. Islam MK, Tsuboya C, Kusaka H, Aizawa S, Ueki T, Michibata H, Kanamori K (2007) Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochim Biophys Acta 1770:1212–1218

    CAS  Google Scholar 

  42. Kanamori K, Kinebuchi Y, Michibata H (1997) Reduction of vanadium(IV) to vanadium(III) by cysteine methyl ester in water in the presence of aminopolycarboxylates. Chem Lett 26: 423–424

    Google Scholar 

  43. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley Ineterscience, New York, pp 197–210

    Google Scholar 

  44. Hawkins CJ, Kott P, Pary DL, Swinehart JH (1983) Vanadium content and oxidation state related to ascidian phylogeny. Comp Biochem Physiol 76B:555–558

    CAS  Google Scholar 

  45. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    CAS  Google Scholar 

  46. Forgac M (1992) Structure, function and regulation of the coated vesicle V-ATPase. J Exp Biol 172:155–169

    CAS  Google Scholar 

  47. Nelson N (1992) Structure and function of V-ATPases in endocytic and secretory organelles. J Exp Biol 172:149–153

    CAS  Google Scholar 

  48. Uyama T, Moriyama Y, Futai M, Michibata H (1994) Immunological detection of a vacuolar-type H+-ATPase in vanadocytes of the ascidian Ascidia sydneiensis samea. J Exp Zool 270:148–154

    CAS  Google Scholar 

  49. Ueki T, Uyama T, Kanamori K, Michibata H (2001) Subunit C of the vacuolar-type ATPase from the vanadium-rich ascidians, Ascidia sydneiensis samea, rescued the pH sensitivity of yeast vma5 mutants. Mar Biotechol 3:316–321

    CAS  Google Scholar 

  50. Levine EP (1961) Occurrence of titanium, vanadium, chromium, and sulfuric acid in the ascidian Eudistoma ritteri. Science 133:1352–1353

    CAS  Google Scholar 

  51. Botte L, Scippa S, de Vincentiis M (1979) Content and ultrastructural localization of transitional metals in ascidian ovary. Dev Growth Differ 21:483–491

    CAS  Google Scholar 

  52. Botte L, Scippa S, de Vincentiis M (1979) Ultrastructural localization of vanadium in the blood cells of Ascidiacea. Experientia 35:1228–1230

    CAS  Google Scholar 

  53. Scippa S, Botte L, Zierold K, de Vincentiis M (1982) Ultrastructure and X-ray microanalysis of blood cells of Ascidia malaca. Acta Zool (Stockholm) 63:121–131

    Google Scholar 

  54. Scippa S, Botte L, Zierold K, de Vincentiis M (1985) X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. I. Elemental composition of morula cells. Cell Tissue Res 239:459–461

    CAS  Google Scholar 

  55. Scippa S, Zierold K, de Vincentiis M (1988) X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. II. Elemental composition of the various blood cell types. J Submicrosc Cytol Pathol 20:719–730

    CAS  Google Scholar 

  56. Bell MV, Pirie BJS, McPhail DB, Goodman BA, Falk-Petersen IB, Sargent JR (1982) Contents of vanadium and sulphur in the blood cells of Ascidia mentula and Ascidiella aspersa. J Mar Biol Ass UK 62:709–716

    CAS  Google Scholar 

  57. Pirie BJS, Bell MV (1984) The localization of inorganic elements, particularly vanadium and sulphur, in haemolymph from the ascidians Ascidia mentula (Müller) and Ascidiella aspersa (Müller). J Exp Mar Biol Ecol 74:187–194

    CAS  Google Scholar 

  58. Lane DJW, Wilkes SL (1988) Localization of vanadium, sulphur and bromine within the vanadocytes of Ascidia mentula Müller: a quantitative electron probe X-ray microanalytical study. Acta Zool (Stockholm) 69:135–145

    Google Scholar 

  59. Frank P, Hedman B, Carlson RMK, Hodgson KO (1994) Interaction of vanadium and sulfate in blood cells from the tunicate Ascidia ceratodes: observations using X-ray absorption edge structure and EPR spectroscopies. Inorg Chem 33:3794–3803

    CAS  Google Scholar 

  60. Frank P, Hedman B, Hodgson KO (1999) Sulfur allocation and vanadium – sulfate interactions in whole blood cells from the tunicate Ascidia ceratodes, investigated using X-ray absorption spectrometry. Inorg Chem 38:260–270

    CAS  Google Scholar 

  61. Anderson DH, Swinehart JH (1991) The distribution of vanadium and sulfur in the blood cells, and the nature of vanadium in the blood cells and plasma of the ascidian, Ascidia ceratodes. Comp Biochem Physiol 99A:585–592

    CAS  Google Scholar 

  62. Kanamori K, Michibata H (1994) Raman spectroscopic study of the vanadium and sulphate in blood cells homogenates of the ascidian, Ascidia gemmata. J Mar Biol Ass UK 74:279–286

    CAS  Google Scholar 

  63. Ueki T, Furuno N, Xu Q, Nitta Y, Kanamori K, Michibata H (2009) Identification and biochemical analysis of a homolog of a sulfate transporter from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1790:1295–1300

    CAS  Google Scholar 

  64. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  Google Scholar 

  65. De Meio RM (1975) Sulfate activation and transfer. In: Greenberg DM (ed) Metabolism of sulfur compounds, vol VII, Metabolic pathway. Academic, New York, pp 287–358

    Google Scholar 

  66. Siegel LM (1975) Biochemistry of the sulfur cycle. In: Greenberg DM (ed) Metabolism of sulfur compounds, vol VII, Metabolic pathway. Academic, New York, pp 217–286

    Google Scholar 

  67. Michibata H, Ueki T (2010) Advances in research on the accumulation, redox behavior, and function of vanadium in ascidians. Biomol Concept 1:97–107

    Google Scholar 

  68. Kanda T, Nose Y, Wuchiyama J, Uyama T, Moriyama Y, Michibata H (1997) Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 14:37–42

    CAS  Google Scholar 

  69. Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N, Kanamori K, Michibata H (2003) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626:43–50

    CAS  Google Scholar 

  70. Ueki T, Satake M, Kamino K, Michibata H (2008) Sequence variation of Vanabin2-like vanadium-binding proteins in blood cells of the vanadium-accumulating ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1780:1010–1015

    CAS  Google Scholar 

  71. Ueki T, Kawakami N, Toshishige M, Matsuo K, Gekko K, Michibata H (2009) Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2. Biochim Biophys Acta 1790:1327–1333

    CAS  Google Scholar 

  72. Kawakami N, Ueki T, Matsuo K, Gekko K, Michibata H (2006) Selective metal binding by Vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1760:1096–1101

    CAS  Google Scholar 

  73. Yamaguchi N, Kamino K, Ueki T, Michibata H (2004) Expressed sequence tag analysis of vanadocytes in a vanadium-rich ascidian, Ascidia sydneiensis samea. Mar Biotechnol (NY) 6:165–174

    CAS  Google Scholar 

  74. Yamaguchi N, Amakawa Y, Yamada H, Ueki T, Michibata H (2006) Localization of vanabins, vanadium-binding proteins, in the blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea. Zool Sci 23:909–915

    CAS  Google Scholar 

  75. Yoshihara M, Ueki T, Watanabe T, Yamaguchi N, Kamino K, Michibata H (2005) VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1730:206–214

    CAS  Google Scholar 

  76. Hamada T, Asanuma M, Ueki T, Hayashi F, Kobayashi N, Yokoyama S, Michibata H, Hirota H (2005) Solution structure of Vanabin2, a vanadium(IV)-binding protein from the vanadium-rich ascidian Ascidia sydneiensis samea. J Am Chem Soc 127:4216–4222

    CAS  Google Scholar 

  77. Fukui K, Ueki T, Ohya H, Michibata H (2003) Vanadium-binding protein in a vanadium-rich ascidian Ascidia sydneiensis samea: CW and pulsed EPR studies. J Am Chem Soc 125: 6352–6353

    CAS  Google Scholar 

  78. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Google Scholar 

  79. Ueki T, Shintaku K, Yonekawa Y, Takatsu N, Yamada H, Hamada T, Hirota H, Michibata H (2007) Identification of vanabin-interacting protein 1 (VIP1) from blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1770:951–957

    CAS  Google Scholar 

  80. Trivedi S, Ueki T, Yamaguchi N, Michibata H (2003) Novel vanadium-binding proteins (Vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochim Biophys Acta 1630:64–70

    CAS  Google Scholar 

  81. Doig AJ, Williams DH (1991) Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol 217:389–398

    CAS  Google Scholar 

  82. Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7:348–366

    CAS  Google Scholar 

  83. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  Google Scholar 

  84. Åslund F, Berndt KD, Holmgren A (1997) Redox potentials of glutaredoxins and other thiol–disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein–protein redox equilibria. J Biol Chem 272:30780–30786

    Google Scholar 

  85. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase glutaredoxin, inhibits intracellular reduction of protein–glutathionyl–mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    CAS  Google Scholar 

  86. Lin Y-F, Yang J, Rosen BP (2007) ArsD residues Cys12, Cys13, and Cys18 form an As(III)-binding site required for arsenic metallochaperone activity. J Biol Chem 282:16783–16791

    CAS  Google Scholar 

  87. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    CAS  Google Scholar 

  88. Lu J, Chew E-H, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 104:12288–12293

    CAS  Google Scholar 

  89. Ueki T, Uyama T, Kanamori K, Michibata H (1998) Isolation of cDNAs encoding subunits A and B of the vacuolar-type ATPase from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 15:823–829

    CAS  Google Scholar 

  90. Ueki T, Yamaguchi N, Michibata H (2003) Chloride channel in vanadocytes of a vanadium-rich ascidian Ascidia sydneiensis samea. Comp Biochem Physiol B Biochem Mol Biol 136:91–98

    Google Scholar 

  91. Yoshinaga M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2006) Glutathione transferases with vanadium-binding activity isolated from the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1760:495–503

    CAS  Google Scholar 

  92. Yoshinaga M, Ueki T, Michibata H (2007) Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochim Biophys Acta 1770:1413–1418

    CAS  Google Scholar 

  93. Yoshihara M, Ueki T, Yamaguchi N, Kamino K, Michibata H (2008) Characterization of a novel vanadium-binding protein (VBP-129) from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1780:256–263

    CAS  Google Scholar 

  94. Ueki T, Furuno N, Michibata H (2011) A novel vanadium transporter of the Nramp family expressed at the vacuole of vanadium-accumulating cells of the ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1810:457–464

    CAS  Google Scholar 

  95. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    CAS  Google Scholar 

  96. Satou Y, Kawashima T, Kohara Y, Satoh N (2003) Large scale EST analyses in Ciona intestinalis: its application as Northern blot analyses. Dev Genes Evol 213:314–318

    CAS  Google Scholar 

  97. Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    CAS  Google Scholar 

  98. Sasaki A, Satoh N (2007) Effects of 5-aza-2′-deoxycytidine on the gene expression profile during embryogenesis of the ascidian Ciona intestinalis: a microarray analysis. Zool Sci 24:648–655

    CAS  Google Scholar 

  99. Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y (2010) Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev Dyn 239:1076–1088

    CAS  Google Scholar 

  100. Sasakura Y, Awazu S, Chiba S, Satoh N (2003) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci USA 100:7726–7730

    CAS  Google Scholar 

  101. Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S (2007) Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol 8(Suppl 1):S3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Michibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Michibata, H., Ueki, T. (2012). High Levels of Vanadium in Ascidians. In: Michibata, H. (eds) Vanadium. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0913-3_3

Download citation

Publish with us

Policies and ethics