Advertisement

Why Cats Happen to Fall from the Sky or on Good and Bad Models

  • Hans-Wolfgang Henn
Conference paper
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL, volume 1)

Abstract

Teaching students to use mathematical modelling sensibly in realistic context is one general goal of mathematics education in order to educate students to become responsible citizens and future decision makers. Here, I want to discuss three important issues which can – depending on how teaching takes place – either promote or obstruct the development of students’ modelling competence. They are:
  • Central examinations,

  • Use of computers,

  • Professional development and motivation of teachers.

Remarks on these issues will be illustrated by examples.

Keywords

Mathematics Teaching Modelling Circuit Final Examination Gold Medal Modelling Competence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baruk, S. (1985). L’âge du capitaine. De l’erreur en mathematiques. Paris: Editions du Seuil.Google Scholar
  2. Blum, W., Henn, H. W., Galbraith, P., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York: Springer.Google Scholar
  3. Calvin, W. H. (1986). The river that flows uphill. New York: Scribner.Google Scholar
  4. English, L. (2003). Mathematical modelling with young learners. In S. J. Lamon, W. A. Parker, & S. K. Houston (Eds.), Mathematical modelling: A way of life. ICTMA 11 (pp. 3–17). Chichester: Horwood.Google Scholar
  5. Galbraith, P. (2007). Dreaming a possible dream: More windmills to conquer. In C. R. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 44–62). Chichester: Horwood.Google Scholar
  6. Henn, H. W. (2001). Mobile classroom – a school project focussing on modelling. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education (pp. 151–160). Chichester: Horwood.Google Scholar
  7. Henn, H. W. (2003). Working and learning in the real world. Early experiences from a mathematics education project in Baden-Wuerttemberg. In S. J. Lamon, W. A. Parker, & S. K. Houston (Eds.), Mathematical modelling: A way of life. ICTMA 11 (pp. 71–79). Chichester: Horwood.Google Scholar
  8. Herget, W., & Scholz, D. (1998). Die etwas andere Aufgabe – aus der Zeitung. Seelze: Kallmeyer.Google Scholar
  9. Martinez-Cruz, A. M., & Ratcliff, M. I. (1998). Beyond modeling world records with a graphing calculator: Assessing the appropriateness of models. Mathematics and Computer Education, 32(2), 143–153.Google Scholar
  10. Sigma Mathematik 11. Klasse (1984). Stuttgart: KlettverlagGoogle Scholar
  11. Winter, H. (2004). Mathematikunterricht und Allgemeinbildung. In H. W. Henn & K. Maaß (Eds.), ISTRON Materialien für einen realitätsbezogenen Mathematikunterricht, Band 8 (pp. 6–15). Hildesheim: Franzbecker.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of MathematicsTechnische Universität Dortmund, IEEMDortmundGermany

Personalised recommendations