Abrantes, P. (1993). Project work in school mathematics. In J. De Lange et al. (Eds.), Innovation in maths education by modelling and applications (pp. 355–364). Chichester: Horwood.
Google Scholar
Aebli, H. (1985). Zwölf Grundformen des Lehrens. Stuttgart: Klett-Cotta.
Google Scholar
Alsina, C. (2007). Less chalk, less words, less symbols … More objects, more context, more actions. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 35–44). New York: Springer.
CrossRef
Google Scholar
Antonius, S., et al. (2007). Classroom activities and the teacher. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 295–308). New York: Springer.
CrossRef
Google Scholar
Baruk, S. (1985). L‘age du capitaine. De l‘erreur en mathematiques. Paris: Seuil.
Google Scholar
Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 45–56). New York: Springer.
CrossRef
Google Scholar
Blum, W. (1998). On the role of “Grundvorstellungen” for reality-related proofs – Examples and reflections. In P. Galbraith et al. (Eds.), Mathematical modelling – Teaching and assessment in a technology-rich world (pp. 63–74). Chichester: Horwood.
Google Scholar
Blum, W., & Leiß, D. (2008). Investigating quality mathematics teaching – The DISUM project. In C. Bergsten et al. (Eds), Proceedings of MADIF-5, Malmö.
Google Scholar
Blum, W., & Leiß, D. (2006). Filling up – In the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. M. Bosch (Ed.), CERME-4–Proceedings of the Fourth Conference of the European Society for Research in Mathematics Education. Guixol.
Google Scholar
Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economic (pp. 222–231). Chichester: Horwood.
CrossRef
Google Scholar
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.
CrossRef
Google Scholar
Blum, W., et al. (2002). ICMI Study 14: applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1/2), 149–171.
CrossRef
Google Scholar
Borromeo Ferri, R. (2004). Mathematische Denkstile. Ergebnisse einer empirischen Studie. Hildesheim: Franzbecker.
Google Scholar
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.
CrossRef
Google Scholar
Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines et al. (Eds.), Mathematical modelling: education, engineering and economics (pp. 260–270). Chichester: Horwood.
Google Scholar
Borromeo Ferri, R., & Blum, W. (2010). Insights into teachers’ unconscious behaviour in modeling contexts. In R. Lesh et al. (Eds.), Modeling students’ mathematical modeling competencies (pp. 423–432). New York: Springer.
Google Scholar
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, 32–42.
Google Scholar
Burghes, D. (1986). Mathematical modelling – Are we heading in the right direction? In J. Berry et al. (Eds.), Mathematical modelling methodology, models and micros (pp. 11–23). Chichester: Horwood.
Google Scholar
Burkhardt, H. (2004). Establishing modelling in the curriculum: Barriers and levers. In H. W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and modelling in mathematics education pre-conference volume (pp. 53–58). Dortmund: University of Dortmund.
Google Scholar
Burkhardt, H. (2006). Functional mathematics and teaching modelling. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 177–186). Chichester: Horwood.
Google Scholar
Burkhardt, H., & Pollak, H. O. (2006). Modelling in mathematics classrooms: Reflections on past developments and the future. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.
CrossRef
Google Scholar
DaPonte, J. P. (1993). Necessary research in mathematical modelling and applications. In T. Breiteig et al. (Eds.), Teaching and learning mathematics in context (pp. 219–227). Chichester: Horwoood.
Google Scholar
De Corte, E., Greer, B., & Verschaffel, L. (1996). Mathematics teaching and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 491–549). New York: Macmillan.
Google Scholar
DeLange, J. (1987). Mathematics, insight and meaning. Utrecht: CD-Press.
Google Scholar
Doerr, H. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 69–78). New York: Springer.
CrossRef
Google Scholar
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.
Google Scholar
Galbraith, P., & Clathworthy, N. (1990). Beyond standard models – Meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137–163.
CrossRef
Google Scholar
Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.
CrossRef
Google Scholar
Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. Teaching Mathematics and Its Applications, 20(3), 129–138.
CrossRef
Google Scholar
Henn, H.-W. (2007). Modelling pedagogy – Overview. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 321–324). New York: Springer.
CrossRef
Google Scholar
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
Google Scholar
Hofe, R. V. (1998). On the generation of basic ideas and individual images: Normative, descriptive and constructive aspects. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (pp. 317–331). Dordrecht: Kluwer.
Google Scholar
Houston, K. (2007). Assessing the “phases” of mathematical modelling. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 249–256). New York: Springer.
CrossRef
Google Scholar
Ikeda, T. (2007). Possibilities for, and obstacles to teaching applications and modelling in the lower secondary levels. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 457–462). New York: Springer.
CrossRef
Google Scholar
Jensen, T. H. (2007). Assessing mathematical modelling competencies. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 141–148). Chichester: Horwood.
Google Scholar
Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 110–119). Chichester: Horwood.
Google Scholar
Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom – Problems and opportunities. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 99–108). New York: Springer.
CrossRef
Google Scholar
Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.
CrossRef
Google Scholar
Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Examples and experiences. Journal für Mathematik-Didaktik, 31, 51–76.
CrossRef
Google Scholar
Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Mathematical modelling and applications: Empirical and theoretical perspectives. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.
CrossRef
Google Scholar
Kaiser-Messmer, G. (1987). Application-oriented mathematics teaching. W. Blum et al. (Eds.), Applications and modelling in learning and teaching mathematics (pp. 66–72). Chichester: Horwood.
Google Scholar
Kintsch, W., & Greeno, J. (1985). Understanding word arithmetic problems. Psychological Review, 92(1), 109–129.
CrossRef
Google Scholar
Krainer, K. (1993). Powerful tasks: A contribution to a high level of acting and reflecting in mathematics instruction. Educational Studies in Mathematics, 24, 65–93.
CrossRef
Google Scholar
Kramarski, B., Mevarech, Z. R., & Arami, V. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational Studies in Mathematics, 49(2), 225–250.
CrossRef
Google Scholar
Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. Zentralblatt für Didaktik der Mathematik, 40(5), S 873–892.
CrossRef
Google Scholar
Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66, 349–371.
CrossRef
Google Scholar
Leiß, D. (2007). Lehrerinterventionen im selbständigkeitsorientierten Prozess der Lösung einer mathematischen Modellierungsaufgabe. Hildesheim: Franzbecker.
Google Scholar
Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: A models and modelling perspective on teaching, learning, and problem solving in mathematics education. Mahwah: Lawrence Erlbaum.
Google Scholar
Lingefjaerd, T. (2007). Modelling in teacher education. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 475–482). New York: Springer.
CrossRef
Google Scholar
Lipowsky, F. (2006). Auf den Lehrer kommt es an. Zeitschrift für Pädagogik, 51. Beiheft. Weinheim: Beltz, 47–70.
Google Scholar
Maaß, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113–142.
CrossRef
Google Scholar
Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 63–78). Chichester: Horwood.
Google Scholar
Matos, J. F., & Carreira, S. (1997). The quest for meaning in students’ mathematical modelling activity. In S. K. Houston et al. (Eds.), Teaching & leaning mathematical modelling (pp. 63–75). Chichester: Horwood.
Google Scholar
Niss, M. (Ed.). (1993). Investigations into assessment in mathematics education. Dordrecht: Kluwer.
Google Scholar
Niss, M. (1996). Goals of mathematics teaching. In A. Bishop et al. (Eds.), International handbook of mathematical education (pp. 11–47). Dordrecht: Kluwer.
Google Scholar
Niss, M. (1999). Aspects of the nature and state of research in mathematics education. Educational Studies in Mathematics, 40, 1–24.
CrossRef
Google Scholar
Niss, M. (2001). Issues and problems of research on the teaching and learning of applications and modelling. In J. F. Matos et al. (Eds.), Modelling and mathematics education: ICTMA-9 (pp. 72–88). Chichester: Ellis Horwood.
Google Scholar
Niss, M. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd Mediterranean conference on mathematical education (pp. 115–124). Athens: The Hellenic Mathematical Society.
Google Scholar
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York: Springer.
CrossRef
Google Scholar
OECD (2005). PISA 2003 Technical Report. Paris: OECD.
Google Scholar
OECD. (2007). PISA 2006 – Science competencies for tomorrow’s world (Vol. 1&2). Paris: OECD.
Google Scholar
Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 201–208). New York: Springer.
CrossRef
Google Scholar
Pauli, C., & Reusser, K. (2000). Zur Rolle der Lehrperson beim kooperativen Lernen. Schweizerische Zeitschrift für Bildungswissenschaften, 3, 421–441.
Google Scholar
Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New Trends in Mathematics Teaching IV (pp. 232–248). UNESCO: Paris.
Google Scholar
Polya, G. (1957). How to solve it. Princeton: Princeton University Press.
Google Scholar
Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23, 145–166.
CrossRef
Google Scholar
Schoenfeld, A. H. (1994). Mathematical thinking and problem solving. Hillsdale: Erlbaum.
Google Scholar
Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension. Essays in honor of Walter Kintsch (pp. 285–305). Hillsdale: Lawrence Erlbaum.
Google Scholar
Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: Metacognitive characteristic of secondary students. Educational Studies in Mathematics, 36(2), 157–195.
CrossRef
Google Scholar
Tanner, H., & Jones, S. (1993). Developing metacognition through peer and self assessment. In T. Breiteig et al. (Eds.), Teaching and learning mathematics in context (pp. 228–240). Chichester: Horwoood.
Google Scholar
Turner, R. et al. (in press). Using mathematical competencies to predict item difficulty in PISA: A MEG study 2003–2009. To appear in: Proceedings of the PISA Research Conference, Kiel, 2009.
Google Scholar
Verschaffel, L., Greer, B., & DeCorte, E. (2000). Making sense of word problems. Lisse: Swets&Zeitlinger.
Google Scholar
Vos, P. (2007). Assessment of applied mathematics and modelling: Using a laboratory-like environment. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 441–448). New York: Springer.
CrossRef
Google Scholar
Zöttl, L., Ufer, S., & Reiss, K. (this volume). Assessing modelling competencies using a multidimensional IRT approach.
Google Scholar