Skip to main content

Can Modelling Be Taught and Learnt? Some Answers from Empirical Research

Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL,volume 1)

Abstract

This chapter deals with empirical findings on the teaching and learning of mathematical modelling, with a focus on grades 8–10, that is, 14–16-year-old students. The emphasis lies on the actual behaviour of students and teachers in learning environments with modelling tasks. Most examples in this chapter are taken from our own empirical investigations in the context of the project DISUM. In the first section, the terms used in this chapter are recollected from a cognitive point of view by means of examples, and reasons are summarised why modelling is an important and also demanding activity for students and teachers. In the second section, examples are given of students’ difficulties when solving modelling tasks, and some important findings concerning students dealing with modelling tasks are presented. The third section concentrates on teachers; examples of successful interventions are given, as well as some findings concerning teachers treating modelling examples in the classroom. In the fourth section, some implications for teaching modelling are summarised, and some encouraging (though not yet fully satisfying) results on the advancement of modelling competency are presented.

Keywords

  • Word Problem
  • Modelling Task
  • Solution Plan
  • Modelling Competency
  • Mathematical Competency

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-0910-2_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-0910-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  • Abrantes, P. (1993). Project work in school mathematics. In J. De Lange et al. (Eds.), Innovation in maths education by modelling and applications (pp. 355–364). Chichester: Horwood.

    Google Scholar 

  • Aebli, H. (1985). Zwölf Grundformen des Lehrens. Stuttgart: Klett-Cotta.

    Google Scholar 

  • Alsina, C. (2007). Less chalk, less words, less symbols … More objects, more context, more actions. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 35–44). New York: Springer.

    CrossRef  Google Scholar 

  • Antonius, S., et al. (2007). Classroom activities and the teacher. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 295–308). New York: Springer.

    CrossRef  Google Scholar 

  • Baruk, S. (1985). L‘age du capitaine. De l‘erreur en mathematiques. Paris: Seuil.

    Google Scholar 

  • Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 45–56). New York: Springer.

    CrossRef  Google Scholar 

  • Blum, W. (1998). On the role of “Grundvorstellungen” for reality-related proofs – Examples and reflections. In P. Galbraith et al. (Eds.), Mathematical modelling – Teaching and assessment in a technology-rich world (pp. 63–74). Chichester: Horwood.

    Google Scholar 

  • Blum, W., & Leiß, D. (2008). Investigating quality mathematics teaching – The DISUM project. In C. Bergsten et al. (Eds), Proceedings of MADIF-5, Malmö.

    Google Scholar 

  • Blum, W., & Leiß, D. (2006). Filling up – In the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. M. Bosch (Ed.), CERME-4–Proceedings of the Fourth Conference of the European Society for Research in Mathematics Education. Guixol.

    Google Scholar 

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economic (pp. 222–231). Chichester: Horwood.

    CrossRef  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.

    CrossRef  Google Scholar 

  • Blum, W., et al. (2002). ICMI Study 14: applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1/2), 149–171.

    CrossRef  Google Scholar 

  • Borromeo Ferri, R. (2004). Mathematische Denkstile. Ergebnisse einer empirischen Studie. Hildesheim: Franzbecker.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.

    CrossRef  Google Scholar 

  • Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines et al. (Eds.), Mathematical modelling: education, engineering and economics (pp. 260–270). Chichester: Horwood.

    Google Scholar 

  • Borromeo Ferri, R., & Blum, W. (2010). Insights into teachers’ unconscious behaviour in modeling contexts. In R. Lesh et al. (Eds.), Modeling students’ mathematical modeling competencies (pp. 423–432). New York: Springer.

    Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, 32–42.

    Google Scholar 

  • Burghes, D. (1986). Mathematical modelling – Are we heading in the right direction? In J. Berry et al. (Eds.), Mathematical modelling methodology, models and micros (pp. 11–23). Chichester: Horwood.

    Google Scholar 

  • Burkhardt, H. (2004). Establishing modelling in the curriculum: Barriers and levers. In H. W. Henn & W. Blum (Eds.), ICMI Study 14: Applications and modelling in mathematics education pre-conference volume (pp. 53–58). Dortmund: University of Dortmund.

    Google Scholar 

  • Burkhardt, H. (2006). Functional mathematics and teaching modelling. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 177–186). Chichester: Horwood.

    Google Scholar 

  • Burkhardt, H., & Pollak, H. O. (2006). Modelling in mathematics classrooms: Reflections on past developments and the future. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.

    CrossRef  Google Scholar 

  • DaPonte, J. P. (1993). Necessary research in mathematical modelling and applications. In T. Breiteig et al. (Eds.), Teaching and learning mathematics in context (pp. 219–227). Chichester: Horwoood.

    Google Scholar 

  • De Corte, E., Greer, B., & Verschaffel, L. (1996). Mathematics teaching and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 491–549). New York: Macmillan.

    Google Scholar 

  • DeLange, J. (1987). Mathematics, insight and meaning. Utrecht: CD-Press.

    Google Scholar 

  • Doerr, H. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 69–78). New York: Springer.

    CrossRef  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.

    Google Scholar 

  • Galbraith, P., & Clathworthy, N. (1990). Beyond standard models – Meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137–163.

    CrossRef  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.

    CrossRef  Google Scholar 

  • Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. Teaching Mathematics and Its Applications, 20(3), 129–138.

    CrossRef  Google Scholar 

  • Henn, H.-W. (2007). Modelling pedagogy – Overview. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 321–324). New York: Springer.

    CrossRef  Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • Hofe, R. V. (1998). On the generation of basic ideas and individual images: Normative, descriptive and constructive aspects. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (pp. 317–331). Dordrecht: Kluwer.

    Google Scholar 

  • Houston, K. (2007). Assessing the “phases” of mathematical modelling. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 249–256). New York: Springer.

    CrossRef  Google Scholar 

  • Ikeda, T. (2007). Possibilities for, and obstacles to teaching applications and modelling in the lower secondary levels. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 457–462). New York: Springer.

    CrossRef  Google Scholar 

  • Jensen, T. H. (2007). Assessing mathematical modelling competencies. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 141–148). Chichester: Horwood.

    Google Scholar 

  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 110–119). Chichester: Horwood.

    Google Scholar 

  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom – Problems and opportunities. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 99–108). New York: Springer.

    CrossRef  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.

    CrossRef  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education – Examples and experiences. Journal für Mathematik-Didaktik, 31, 51–76.

    CrossRef  Google Scholar 

  • Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Mathematical modelling and applications: Empirical and theoretical perspectives. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.

    CrossRef  Google Scholar 

  • Kaiser-Messmer, G. (1987). Application-oriented mathematics teaching. W. Blum et al. (Eds.), Applications and modelling in learning and teaching mathematics (pp. 66–72). Chichester: Horwood.

    Google Scholar 

  • Kintsch, W., & Greeno, J. (1985). Understanding word arithmetic problems. Psychological Review, 92(1), 109–129.

    CrossRef  Google Scholar 

  • Krainer, K. (1993). Powerful tasks: A contribution to a high level of acting and reflecting in mathematics instruction. Educational Studies in Mathematics, 24, 65–93.

    CrossRef  Google Scholar 

  • Kramarski, B., Mevarech, Z. R., & Arami, V. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational Studies in Mathematics, 49(2), 225–250.

    CrossRef  Google Scholar 

  • Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. Zentralblatt für Didaktik der Mathematik, 40(5), S 873–892.

    CrossRef  Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66, 349–371.

    CrossRef  Google Scholar 

  • Leiß, D. (2007). Lehrerinterventionen im selbständigkeitsorientierten Prozess der Lösung einer mathematischen Modellierungsaufgabe. Hildesheim: Franzbecker.

    Google Scholar 

  • Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: A models and modelling perspective on teaching, learning, and problem solving in mathematics education. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lingefjaerd, T. (2007). Modelling in teacher education. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 475–482). New York: Springer.

    CrossRef  Google Scholar 

  • Lipowsky, F. (2006). Auf den Lehrer kommt es an. Zeitschrift für Pädagogik, 51. Beiheft. Weinheim: Beltz, 47–70.

    Google Scholar 

  • Maaß, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113–142.

    CrossRef  Google Scholar 

  • Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines et al. (Eds.), Mathematical modelling: Education, engineering and economics (pp. 63–78). Chichester: Horwood.

    Google Scholar 

  • Matos, J. F., & Carreira, S. (1997). The quest for meaning in students’ mathematical modelling activity. In S. K. Houston et al. (Eds.), Teaching & leaning mathematical modelling (pp. 63–75). Chichester: Horwood.

    Google Scholar 

  • Niss, M. (Ed.). (1993). Investigations into assessment in mathematics education. Dordrecht: Kluwer.

    Google Scholar 

  • Niss, M. (1996). Goals of mathematics teaching. In A. Bishop et al. (Eds.), International handbook of mathematical education (pp. 11–47). Dordrecht: Kluwer.

    Google Scholar 

  • Niss, M. (1999). Aspects of the nature and state of research in mathematics education. Educational Studies in Mathematics, 40, 1–24.

    CrossRef  Google Scholar 

  • Niss, M. (2001). Issues and problems of research on the teaching and learning of applications and modelling. In J. F. Matos et al. (Eds.), Modelling and mathematics education: ICTMA-9 (pp. 72–88). Chichester: Ellis Horwood.

    Google Scholar 

  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd Mediterranean conference on mathematical education (pp. 115–124). Athens: The Hellenic Mathematical Society.

    Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York: Springer.

    CrossRef  Google Scholar 

  • OECD (2005). PISA 2003 Technical Report. Paris: OECD.

    Google Scholar 

  • OECD. (2007). PISA 2006 – Science competencies for tomorrow’s world (Vol. 1&2). Paris: OECD.

    Google Scholar 

  • Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 201–208). New York: Springer.

    CrossRef  Google Scholar 

  • Pauli, C., & Reusser, K. (2000). Zur Rolle der Lehrperson beim kooperativen Lernen. Schweizerische Zeitschrift für Bildungswissenschaften, 3, 421–441.

    Google Scholar 

  • Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New Trends in Mathematics Teaching IV (pp. 232–248). UNESCO: Paris.

    Google Scholar 

  • Polya, G. (1957). How to solve it. Princeton: Princeton University Press.

    Google Scholar 

  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23, 145–166.

    CrossRef  Google Scholar 

  • Schoenfeld, A. H. (1994). Mathematical thinking and problem solving. Hillsdale: Erlbaum.

    Google Scholar 

  • Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension. Essays in honor of Walter Kintsch (pp. 285–305). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: Metacognitive characteristic of secondary students. Educational Studies in Mathematics, 36(2), 157–195.

    CrossRef  Google Scholar 

  • Tanner, H., & Jones, S. (1993). Developing metacognition through peer and self assessment. In T. Breiteig et al. (Eds.), Teaching and learning mathematics in context (pp. 228–240). Chichester: Horwoood.

    Google Scholar 

  • Turner, R. et al. (in press). Using mathematical competencies to predict item difficulty in PISA: A MEG study 2003–2009. To appear in: Proceedings of the PISA Research Conference, Kiel, 2009.

    Google Scholar 

  • Verschaffel, L., Greer, B., & DeCorte, E. (2000). Making sense of word problems. Lisse: Swets&Zeitlinger.

    Google Scholar 

  • Vos, P. (2007). Assessment of applied mathematics and modelling: Using a laboratory-like environment. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 441–448). New York: Springer.

    CrossRef  Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (this volume). Assessing modelling competencies using a multidimensional IRT approach.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Blum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Blum, W. (2011). Can Modelling Be Taught and Learnt? Some Answers from Empirical Research. In: Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (eds) Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_3

Download citation