Project Modelling Routes in 12–16-Year-Old Pupils

  • Manuel Sol
  • Joaquin Giménez
  • Núria Rosich
Conference paper
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL, volume 1)


The modelling behaviour of 12–16-year-old pupils was studied on the basis of written reports about realistic mathematics projects. These were analysed by using a hypothetical project modelling route involving 16 actions. Application of this tool was useful in understanding the difficulties pupils have in carrying out the initial steps and the validation process.


Modelling Behaviour Real Object Mathematical Object Modelling Cycle Project Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22, 123–139.CrossRefGoogle Scholar
  2. Blommaert, J., & Bulcaen, C. (2000). Critical discourse analysis. Annual Review of Anthropology, 29, 447–466.CrossRefGoogle Scholar
  3. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines et al. (Eds.), Mathematical modelling. Education, engineering and economics (pp. 222–231). Chichester: Horwood.CrossRefGoogle Scholar
  4. Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.CrossRefGoogle Scholar
  5. Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 260–270). Chichester: Horwood.Google Scholar
  6. Crouch, R. M., & Haines, C. R. (2003). Do you know which students are good mathemathical modellers? Some research developments. Technical Report No. 83, Department of Physics, Astronomy and Mathematics, University of Hertfordshire (p. 25). Hatfield: University of Hertfordshire.Google Scholar
  7. Galbraith, P. L., & Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education: ICTMA9 applications in science and technology (pp. 300–310). Chichester: Horwood.Google Scholar
  8. Gellert, U., & Jablonka, E. (Eds.). (2006). Mathematisation and demathematisation. London: Sense.Google Scholar
  9. Giménez, J., & Sol, M. (2005). Students’ difficulties when starting with mathematical projects. In L. Santos, A. P. Canavarro, & J. Brocardo (Eds.), Paths and crossroads (pp. 217–230). Lisboa: APM.Google Scholar
  10. Haines, C., & Crouch, R. (2010). Remarks on a modelling cycle and interpretation of behaviours. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 145–154). New York: Springer.Google Scholar
  11. Haines, C., & Houston, K. (2001). Assessing students project work. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 431–442). Dordrecht, The Netherlands: Kluwer.Google Scholar
  12. Maaß, K. (2007). Modelling taks for low achieving students. First results of an empirical study. In D. Pitta-Pantazi & G. Philippou (Eds.), CERME 5 Proceedings of the fifth congress of the European society for research in mathematics education (pp. 2120–2129). Larnaca: University of Cyprus.Google Scholar
  13. Marshall, C., & Rossman, G. B. (1998). Designing qualitative research. Thousand Oaks: Sage.Google Scholar
  14. Mason, J., & Johnston-Wilder, S. (2004). Fundamental constructs in mathematics education. London: Routledge Falmer & Open University.Google Scholar
  15. Sol, M. (2009). Anàlisis de les competències i habilitats en el treball de projectes matemàtics amb alumnes de 12-16 anys en una aula heterogènia. Doctoral thesis. UB, Barcelona.Google Scholar
  16. Sol, M., & GIménez, J. (2004). Proyectos matemáticos realistas y resolución de problemas. In J. Gimenez, J. P. Ponte, & L. Santos (Eds.), La actividad matemática en el aula (pp. 35–47). Barcelona: Graó.Google Scholar
  17. Sol, M., Giménez, J., & Rosich, N. (2007). Competencias y proyectos matemáticos realistas en la ESO. UNO Revista de Didáctica de las Matemáticas, 46, 43–67.Google Scholar
  18. Sol, M., Giménez, J., & Rosich, N. (2009). Analyzing modelling as a process: A teaching experiment with immigrant students. In H. Labelle, D. Gauthier (Eds.), Proceedings CIEAEM 61, Montréal, Canada, July 26–31, 2009. Quaderni di Ricerca in Didattica, Supplemento n. 2. Palermo, Italy: G.R.I.M., Department of Mathematics, University of Palermo.Google Scholar
  19. Treffers, A. (1987). Three dimensions: A model of goal and theory descriptions in mathematics instruction – The Wiskobas project. Dordrecht: Kluwer.Google Scholar
  20. Vilatzara, G. (2001). Experiencias sobre proyectos e investigaciones matemáticas en secundaria. Números. Revista de Didáctica de las Matemáticas, 46, 29–47.Google Scholar
  21. Voskoglou, M. (2007). A stochastic model for the modelling process. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 149–157). Chichester: Horwood.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Vilatzara Secondary SchoolVilassar de Mar, BarcelonaSpain
  2. 2.University of BarcelonaBarcelonaSpain

Personalised recommendations