Skip to main content

Recent Developments and Challenges in Shape Memory Technology

  • Conference paper
  • First Online:
Nanotechnological Basis for Advanced Sensors

Abstract

Nickel-Titanium-based alloys (NiTi) represent structural materials with actor and sensor functions due to their shape memory properties. This is especially useful for actuator applications, e.g. in valves or switches. A temperature sensor is no longer needed because the material can be set to exhibit the shape memory effect at a given temperature in a certain temperature range. High actuator forces and strains can be generated in a small material volume, which is ideal for the miniaturization of technical devices. Recent developments and technological challenges in shape memory technology with a focus on the research of the interdisciplinary Center for Shape Memory Technology (SFB 459 - Formgedächtnistechnik) at the Ruhr-University Bochum are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Wayman, J.D. Harrison, J. Met. 9, 26 (1989).

    Google Scholar 

  2. S. Kim, Shape Memory Alloys - Its Present and Future. The First Pacific Rim Conference on Advanced Materials and Processing (PRICM-1). JOM-J Min Met Mat Soc: 59 (1992).

    Google Scholar 

  3. T. Saburi, Shape Memory Materials. In: Shape Memory Materials, K. Otsuka and C.M. Wayman (Eds), p. 49, Camridge Press, Cambridge (1998).

    Google Scholar 

  4. S. Miyazaki, in: Engineering Aspects of Shape Memory Alloys, T.W. Duerig, D. Stöckel and C.M. Wayman (Eds.), p. 394, Butterworth-Heinemann, London (1990).

    Google Scholar 

  5. S.A. Shabalovskaya, Bio-Med. Mater. Eng. 12, 69 (2002).

    Google Scholar 

  6. L.M. Schetky, Mater. Sci. Forum 327–328, 9 (2000).

    Google Scholar 

  7. M. Frotscher, Hochflexible Komponenten aus NiTi-Formgedächtnislegierungen für medizinische Anwendungen - Werkstoffwissenschaftliche Untersuchungen zu Werkstoffgefügen und mechanischen Eigenschaften. Berichte aus der Werkstofftechnik. Shaker Verlag, Dissertation, Ruhr-University Bochum (2009).

    Google Scholar 

  8. M. Frotscher, J. Burow, M. Wagner, P. Schön, K. Neuking, R. Böckmann, G. Eggeler, Proceedings of the International Conference for Shape Memory and Superelastic Technologies (SMST 2007), p.149, ASM International (2008).

    Google Scholar 

  9. M. Frotscher, J. Burow, P. Schön, K. Neuking, R. Böckmann, G. Eggeler, Materialwiss. Werkstofftech. 40, 17 (2009).

    Article  Google Scholar 

  10. M. Frotscher, M.L. Young, H. Bei, E.P.George, K. Neuking, G. Eggeler, 8th European Symposium on Martensitic Transformations (ESOMAT 2009), DOI 10.1051/esomat/200906012 (2009).

  11. P. Sevilla, F. Martorell, C. Libenson, J.A. Planell, F.J. Gil, J. Mater. Sci. Mater. Med. 19, 525 (2008).

    Article  Google Scholar 

  12. A. Falvo, F.M. Furgiuele, C. Maletta, Mat. Sci. Eng. A 412, 235 (2005).

    Article  Google Scholar 

  13. X.J. Yan, D.Z. Yang, M. Qi, Mater. Charact. 57, 58 (2006).

    Article  Google Scholar 

  14. H. Gugel, W. Theisen, Materialwiss. Werkstofftech. 38, 489 (2007).

    Article  Google Scholar 

  15. H. Gugel, A. Schuermann, W. Theisen, Mat. Sci. Eng. A 481–482, 668 (2008).

    Google Scholar 

  16. F. Butera, S. Miyazaki, Proceedings of the 12th International Conference on New Actuators (Actuator 2010), WFB Wirtschaftsfoerderung Bremen GmbH, Bremen (2010).

    Google Scholar 

  17. D.M. Mitteer, L.D. Ridge, Proceedings of the 12th International Conference on New Actuators (Actuator 2010), WFB Wirtschaftsfoerderung Bremen GmbH, Bremen (2010).

    Google Scholar 

  18. M. Collado, F. Álvarez, R. Cabás, Proceedings of the 12th International Conference on New Actuators (Actuator 2010), WFB Wirtschaftsfoerderung Bremen GmbH, Bremen (2010).

    Google Scholar 

  19. M. Humburg, G. Eggeler, M. Wagner, Automobiltech. Z. 108, 196 (2006).

    Google Scholar 

  20. M. Humburg, Aktoranwendungen in der Automobilindustrie - Thermomanagement bei Standheizungen, Bochumer Kolloquium über Martensitische Transformation (BOKOMAT 2010), Bochum (2010).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the German Research Foundation DFG (Deutsche Forschungsgemeinschaft) and the State North Rhine-Westphalia in the framework of projects T3 and Z of the Collaborative Research Center SFB 459 (Shape-Memory Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Frotscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Frotscher, M., Eggeler, G. (2011). Recent Developments and Challenges in Shape Memory Technology. In: Reithmaier, J., Paunovic, P., Kulisch, W., Popov, C., Petkov, P. (eds) Nanotechnological Basis for Advanced Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0903-4_56

Download citation

Publish with us

Policies and ethics