Skip to main content

Fabrication of Porous and Dense Ceramics from Transitional Nano-Alumina

  • Conference paper
  • First Online:
Nanotechnological Basis for Advanced Sensors

Abstract

Porous alumina ceramics (density 0.75 TD) with a typical vermicular microstructure were obtained from transitional nano-alumina powder by cold isostatic pressing (P = 500 MPa) and sintering at non-isothermal conditions from RT to 1,500°C. Mechanical activation, realized by attriting, was used to reduce the α-Al2O3 transformation to a temperature of 1,038°C. Conventional pressing (P = 500 MPa) and sintering at 1,500°C were used to fabricate 0.96 TD dense alumina ceramics. Electrophoretic deposition was applied to the mechanically activated powder followed by isostatic pressing and sintering. Compacts with a density of 0.94 TD were obtained at 1,400°C/30 min. The microstructure was homogenous with grain sizes of 300 ± 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Bowen, C. Carry, Powder Technol. 128, 248 (2002).

    Article  Google Scholar 

  2. J.R. Viguie, J. Sukmanowski, B. Nolting, F.-X. Royer, Colloids Surf. A302, 269 (2007).

    Google Scholar 

  3. J. Frenkel, J. Phys. (USSR) 8, 386 (1945).

    Google Scholar 

  4. C. Herring, J. Appl. Phys. 21, 301 (1950).

    Article  ADS  Google Scholar 

  5. G. Skandan, H. Hahn, J.C. Parker, Scr. Metall. 25, 2389 (1991).

    Article  Google Scholar 

  6. W.H. Rhodes, J. Am. Ceram. Soc. 64, 19 (1981).

    Article  Google Scholar 

  7. M. Kumagai, G. Messing, J. Am. Ceram. Soc. 68, 500 (1985).

    Article  Google Scholar 

  8. C. Legros, C. Carry, P. Bowen, H. Hofmann, J. Eur. Ceram. Soc. 19, 1967 (1999).

    Article  Google Scholar 

  9. J. Bossert, E. Fidancevska, Science of Sintering 39, 117 (2007).

    Article  Google Scholar 

  10. E. Fidancevska, J. Bossert, V. Vassilev, R. Adziski, M. Milosevski, in Nanostructured Materials for Advanced Technological Applications, J.P. Reithmaier et al. (eds.), p. 173, Springer Science + Business media B.V. (2009).

    Google Scholar 

  11. K. Konig, S. Novak, A. Boccaccini, S. Kobe, J. Mater. Process. Technol. 210, 96 (2010).

    Article  Google Scholar 

  12. P. Sarkar, P. Nicholson, J. Am. Ceram. Soc. 79, 1987 (1996).

    Article  Google Scholar 

  13. Y.-M. Chiang, D.P. Birnie, W.D. Kingery, Physical Ceramics, John Wiley & Sons, New York (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilija Fidancevska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fidancevska, E., Bossert, J., Vassilev, V., Milosevski, M. (2011). Fabrication of Porous and Dense Ceramics from Transitional Nano-Alumina. In: Reithmaier, J., Paunovic, P., Kulisch, W., Popov, C., Petkov, P. (eds) Nanotechnological Basis for Advanced Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0903-4_4

Download citation

Publish with us

Policies and ethics