Skip to main content

Nanostructured ZnO Thin Films: Properties and Applications

  • Conference paper
  • First Online:

Abstract

Zinc oxide has been recognized as one of the most important semiconductor materials for optoelectronics, solar cells, piezoelectricity, gas sensing, bio- applications etc. ZnO has been an object of intensive investigation, particularly in its low dimensional structures – thin layers with nanometer crystallites, nano-wires, nano-rods or nano-tubes, nano-bells and others. In thi contribution the optical and structural properties of ZnO thin films are discussed. The application of ZnO thin films as a transparent conductive electrode for solar cells and light emitting diodes, as well as for gas sensors is demonstrated. The possibility for bio-application of ZnO films is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Aoki, Y. Hatanaka, and D.C. Look, Appl. Phys.Lett. 76, 3257 (2000).

    Article  ADS  Google Scholar 

  2. V.N. Nikitenko, M.M. Malov, D.I. Dimova and I.P. Kuz’mina, Zhurnal Prikladnoi Spectroscopii 21, 315–319 (1974) (Russian).

    Google Scholar 

  3. S. Sze, Semiconductor Sensitivity, Chemical Sensors, p. 383, Wiley, New York (1995).

    Google Scholar 

  4. J. Watson, Sens. Actuators 5, 29 (1984).

    Article  Google Scholar 

  5. H.-J. Lim, D.Y. Lee, Y.-J. Oh, Sens. Actuators B 125, 405 (2006).

    Article  Google Scholar 

  6. D. Dimova-Malinovska, O. Angelov, H. Nichev, and J.C. Pivin, J. Optoelectron. Adv. Mater. 9, 248 (2007).

    Google Scholar 

  7. Z.L. Wang, J. Phys. D. Condensed Matter 16, R829 (2004).

    Article  ADS  Google Scholar 

  8. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001).

    Article  ADS  Google Scholar 

  9. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  ADS  Google Scholar 

  10. Y. Ma, W.L. Wang, K.J. Liao, and C.Y. Kong, J. Wide Band Mater. 10, 113–120 (2002).

    Article  Google Scholar 

  11. D. Dimova-Malinovska, H. Nichev, V. Georgieva, O. Angelov, J. C. Pivin, and V. Mikly, physica status solidi (a) 205, 1993 (2008).

    Article  ADS  Google Scholar 

  12. D. Dimova-Malinovska, M.Sendova-Vassileva, N.Tzenov, M.Tzolov, and L. Vassilev, Proc. 17 EPVCE, 22–26 October 2001, Munich, p. 2312 (2001).

    Google Scholar 

  13. D. Dimova-Malinovska and M. Nikolaeva, Vacuum 69, 227 (2002)

    Article  Google Scholar 

  14. V. Malov, Piezoresonanie datchizi, p.68, Enegyatomizdat, Moskow (1989) (in Russian).

    Google Scholar 

  15. S. Coyle, Y. Wu, K.T. Lau, D. De Rossi, G. Wallace, MRS Bull. 32, 434 (2007).

    Article  Google Scholar 

  16. P.K. Stoimenov, R.L. Klinger, G.L Marchin, K. J. Klabunde, Langmuir 18, 6679 (2002).

    Article  Google Scholar 

  17. H.C Axtell, S.M Hartley, R.A. Sallavanti, U.S. Patent 5,026,778 (2005).

    Google Scholar 

  18. O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001).

    Article  Google Scholar 

  19. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J. Nanoparticle Res. 9, 479 (2007).

    Article  Google Scholar 

  20. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose, Appl. Phys. Lett. 90, 213902 (2007).

    Article  ADS  Google Scholar 

  21. K.H. Tam, A.B. Djurisic, C.M.N. Chan, Y.Y. Xi, C.W. Tse, Y.H. Leung, W.K. Chan, F.C.C. Leung, and D.W.T. Au, Thin Solid Films 515, 6167 (2008).

    Article  ADS  Google Scholar 

  22. H. Nichev, D. Dimova-Malinovska, M. Sendova-Vassileva, P. Andreev, and V. Mikli, Nanotechnol. Nanomater. 2010 (in press).

    Google Scholar 

  23. A.A. Grechnikov, V.B. Georgieva, S.S. Alimpiev, A.S. Borodkov, S.M. Nikiforov, Ya. O. Simanovsky, D. Dimova-Malinovska, and O.I. Angelov, J. Phys.: Conference Series 223 012038 (2010).

    Google Scholar 

  24. S.S. Alimpiev, A.A. Grechnikov, J. Sunner, V.A. Karavanskii, S.N. Zhabin, Ya.O. Simanovsky, and S.M. Nikiforov, J. Chem. Phys. 128, 014711–19 (2008).

    Google Scholar 

Download references

Acknowledgements

This research was carried out as part of the activities of the Contract No.DO02-207/2008 funded by the Bulgarian NSF and project NANOPV of the 7FP of the EC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doriana Dimova-Malinovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dimova-Malinovska, D. (2011). Nanostructured ZnO Thin Films: Properties and Applications. In: Reithmaier, J., Paunovic, P., Kulisch, W., Popov, C., Petkov, P. (eds) Nanotechnological Basis for Advanced Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0903-4_16

Download citation

Publish with us

Policies and ethics