Skip to main content

Electric Field Gradients at Hydrogen and Metal Sites in Light Metal Hydrides

  • Conference paper
  • First Online:
Carbon Nanomaterials in Clean Energy Hydrogen Systems - II

Abstract

The results of measuring the quadrupole coupling constants and asymmetry parameters at deuterium and metal sites in amorphous BeD2, crystalline α-MgD2, and crystalline α-AlD3 by solid state NMR, as well as the results of ab initio Hartree–Fock calculations of the EFG tensors at hydrogen and metal positions for some (BenHm), (MgnHm), and (AlnHm) clusters, are reported. It have been found that the magnitude of the EFG at the hydrogen sites is more than an order of magnitude larger than at the metal sites. The sign, amplitude, and asymmetry parameter at hydrogen depend on the M–H–M angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam AKMA, Ali MM, Ali MS (2010) AlH3 between 65–110 GPa: implications of electronic band and phonon structures. Physika C 470:403–406

    Article  CAS  Google Scholar 

  2. Bel’kov SA, Dolgoleva GV, Kochemasov GG, Mitrofanov EI (2002) Application of beryllium deuteride as shell matter of laser X-ray targets. Quantum Electron 32(1):27 (in Russian)

    Article  Google Scholar 

  3. Pfrommer B, Elsasser C, Fahnle M (1994) Possibility of Li–Mg and Al–Mg hydrides being metallic. Phys Rev B 50:5089

    Article  CAS  Google Scholar 

  4. Yu R, Lam PK (1988) Electronic and structural properties of MgH2. Phys Rev B 37:8730

    Article  CAS  Google Scholar 

  5. Baraille I, Pouchan C, Causa M, Pisani C (1994) An ab initio Hartree–Fock study of electronic and structural properties of MgH2. Chem Phys 179:39

    Article  Google Scholar 

  6. Vajeeston P (2004) Theoretical modeling of hydrides. Dissertation Phd, N. 309, Department of Physics, University of Oslo, Norway

    Google Scholar 

  7. Wang B-T, Zhang P, Shi H et al (2010) Mechanical and chemical bonding properties of ground state BeH2. Eur Phys J B 74:303–308

    Google Scholar 

  8. Kato H, Yamaguchi K, Yonezawa T, Fukui K (1965) The electronic structure of some hydrides, halides, and alkyl compounds of boron and aluminum. I. Monomers and ions. Bull Chem Soc Jpn 38:2144

    Article  CAS  Google Scholar 

  9. Ke X, Kuwabara A, Tanaka I (2005) Cubic and orthorhombic structures of aluminum hydride AlH3 predicted by a first-principal study. Phys Rev B 71:184107-1-8

    Google Scholar 

  10. Noritake T, Towata S, Aoki M et al (2003) Charge density measurement in MgH2 by synchrotron X-ray diffraction. J Alloy Comp 356–357:84–86

    Article  Google Scholar 

  11. Senin MD, Akhachinskii VV, Markushkin YuE et al (1993) Preparation, structure, and properties of beryllium hydryde. Neorg Mater 29(12):1582

    CAS  Google Scholar 

  12. Brower FM, Matzek NE, Reigler PF et al (1976) Preparation and properties aluminum hydride. J Am Chem Soc 98(9):2450–2453

    Article  CAS  Google Scholar 

  13. Tarasov VP, Muravlev YuB (2004) 2H and 27Al nuclear magnetic resonance of aluminum trihydride and trideuderide. Khim Fiz 23(4):3–15 (in Russian)

    CAS  Google Scholar 

  14. Tarasov VP, Muravlev YuB, Izotov DE (2005) Electric field gradients in beryllium hydride. Dokl Phys Chem 404:190–194

    Article  CAS  Google Scholar 

  15. Schmidt M, Baldridge K, Boatz J et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  16. Huber H (1985) Deuterium quadrupole couplings. A theoretical investigation. J Chem Phys 83:4591

    Article  CAS  Google Scholar 

  17. Sampath S, Lantzky KM, Benmore CJ et al (2003) Structural quantum isotope effects in amorphous beryllium hydride. J Chem Phys 119:12499

    Article  CAS  Google Scholar 

  18. Smith GS, Johnson QC, Smith DK et al (1988) The crystal and molecular structure of beryllium hydride. Solid State Commun 67(5):491–494

    Article  CAS  Google Scholar 

  19. Tarasov VP, Muravlev YuB, Kirakosyan GA (2008) Angular dependence of the Knight shift, electric field gradient, and spin–lattice relaxation time of 9Be NMR in beryllium metal. Phys Solid State 50(6):1009–1013

    Article  CAS  Google Scholar 

  20. Mokarram M, Rangle JL (1973) On the relationship between deuteron quadrupole coupling constants and force constants in diatomic hydrides. J Chem Phys 59:2770–2771

    Article  CAS  Google Scholar 

  21. Bortz M, Bertheville B, Bottner G, Yvon K (1999) Structure of the high pressure phase γ-MgH2 by neutron powder diffraction. J Alloy Comp 287(1–2):L4–L6

    Article  CAS  Google Scholar 

  22. Bastow TJ (1991) Temperature dependence of the nuclear quadrupole coupling and relaxation time of 25Mg in Mg metal. J Phys Condens Matter 3(6):753

    Article  CAS  Google Scholar 

  23. Turley JW, Rinn HW (1969) The crystal structure of aluminum hydride. Inorg Chem 8:18–22

    Article  CAS  Google Scholar 

  24. Snyder LC (1978) Deuteron quadrupole coupling in molecules. J Chem Phys 68(1):291–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no.10-03-00055a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Tarasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tarasov, V.P., Izotov, D.E., Shul’ga, Y.M. (2011). Electric Field Gradients at Hydrogen and Metal Sites in Light Metal Hydrides. In: Zaginaichenko, S., Schur, D., Skorokhod, V., Veziroglu, A., İbrahimoğlu, B. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems - II. NATO Science for Peace and Security Series C: Environmental Security, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0899-0_20

Download citation

Publish with us

Policies and ethics