Advertisement

Recombinant Membrane Protein Production: Past, Present and Future

  • Ravi K.R. Marreddy
  • Eric R. Geertsma
  • Bert PoolmanEmail author
Conference paper

Abstract

One of the major challenges in membrane protein structural genomics is the production of properly folded protein in large quantities. Several in cell and cell-free expression systems have been developed. However, in most cases laborious trial-and-error based optimization of either the host, genetic circuitry or protein is necessary for high level production. A better understanding of membrane protein biogenesis is needed to obtain further insights into the bottlenecks of their expression. The application of “Omics” technologies to understand the host cell response to membrane protein overproduction has contributed significantly to our understanding of membrane protein production and provided rationales for optimization both the host cells and/or expression conditions. In this review, we present an overview of the current well-established expression systems and the successful approaches to optimize the synthesis of well-folded and functional membrane proteins.

Keywords

Transport proteins Recombinant expression Membrane protein biogenesis Lactococcus lactis Escherichia coli Membrane protein production 

Notes

Acknowledgments

This research work was supported by the Netherlands Proteomics Centre (NPC), the European Membrane Protein Consortium EDICT, and the Netherlands Science Foundation (NWO; Chemical Sciences Top Subsidy to BP; grant number 700-56-302). We thank Gea Schuurman-Wolters for assistance with the experiments presented Fig. 2.

References

  1. Akermoun, M., Koglin, M., Zvalova-Iooss, D., Folschweiller, N., Dowell, S.J. and Gearing, K.L. (2005) Characterization of 16 human G protein-coupled receptors expressed in baculovirus-infected insect cells. Protein Expr. Purif. 44: 65–74.PubMedGoogle Scholar
  2. Altamura, N., Capitanio, N., Bonnefoy, N., Papa, S. and Dujardin, G. (1996) The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 382: 111–115.PubMedGoogle Scholar
  3. Andre, N., Cherouati, N., Prual, C., Steffan, T., Zeder-Lutz, G., Magnin, T., Pattus, F., Michel, H., Wagner, R. and Reinhart, C. (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. 15: 1115–1126.PubMedGoogle Scholar
  4. Arechaga, I., Miroux, B., Karrasch, S., Huijbregts, R., de Kruijff, B., Runswick, M.J. and Walker, J.E. (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett. 482: 215–219.PubMedGoogle Scholar
  5. Aslanidis, C. and de Jong, P.J. (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18: 6069–6074.PubMedGoogle Scholar
  6. Bannwarth, M. and Schulz, G.E. (2003) The expression of outer membrane proteins for crystallization. Biochim. Biophys. Acta 1610: 37–45.PubMedGoogle Scholar
  7. Bartus, C.L., Jaakola, V.P., Reusch, R., Valentine, H.H., Heikinheimo, P., Levay, A., Potter, L.T., Heimo, H., Goldman, A. and Turner, G.J. (2003) Downstream coding region determinants of bacterio-opsin, muscarinic acetylcholine receptor and adrenergic receptor expression in Halobacterium salinarum. Biochim. Biophys. Acta 1610: 109–123.PubMedGoogle Scholar
  8. Basile, G. and Peticca, H. (2009) Recombinant protein expression in Leishmania tarentolae. Mol. Biotechnol. 43: 273–278.PubMedGoogle Scholar
  9. Berger, I., Fitzgerald, D.J. and Richmond, T.J. (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22: 1583–1587.PubMedGoogle Scholar
  10. Berntsson, R.P., Alia, O.N., Fusetti, F., Thunnissen, A.M., Poolman, B. and Slotboom, D.J. (2009) Selenomethionine incorporation in proteins expressed in Lactococcus lactis. Protein Sci. 18: 1121–1127.PubMedGoogle Scholar
  11. Bill, R.M. (2001) Yeast – a panacea for the structure-function analysis of membrane proteins? Curr. Genet. 40: 157–171.PubMedGoogle Scholar
  12. Bonander, N., Hedfalk, K., Larsson, C., Mostad, P., Chang, C., Gustafsson, L. and Bill, R.M. (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci. 14: 1729–1740.PubMedGoogle Scholar
  13. Bonander, N., Darby, R.A., Grgic, L., Bora, N., Wen, J., Brogna, S., Poyner, D.R., O'Neill, M.A. and Bill, R.M. (2009) Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb. Cell Fact. 8: 10.PubMedGoogle Scholar
  14. Bongers, R.S., Veening, J.W., Van Wieringen, M., Kuipers, O.P. and Kleerebezem, M. (2005) Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. Appl. Environ. Microbiol. 71: 8818–8824.PubMedGoogle Scholar
  15. Boon, J.M. and Smith, B.D. (2002) Chemical control of phospholipid distribution across bilayer membranes. Med. Res. Rev. 22: 251–281.PubMedGoogle Scholar
  16. Breitling, R., Klingner, S., Callewaert, N., Pietrucha, R., Geyer, A., Ehrlich, G., Hartung, R., Muller, A., Contreras, R., Beverley, S.M. and Alexandrov, K. (2002) Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr. Purif. 25: 209–218.PubMedGoogle Scholar
  17. Chebolu, S. and Daniell, H. (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr. Top. Microbiol. Immunol. 332: 33–54.PubMedGoogle Scholar
  18. Chen, M., Samuelson, J.C., Jiang, F., Muller, M., Kuhn, A. and Dalbey, R.E. (2002) Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J. Biol. Chem. 277: 7670–7675.PubMedGoogle Scholar
  19. Chen, Y., Song, J., Sui, S.F. and Wang, D.N. (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr. Purif. 32: 221–231.PubMedGoogle Scholar
  20. Chen, Y.J., Pornillos, O., Lieu, S., Ma, C., Chen, A.P. and Chang, G. (2007) X-ray structure of EmrE supports dual topology model. Proc. Natl. Acad. Sci. USA 104: 18999–19004.PubMedGoogle Scholar
  21. Chloupkova, M., Pickert, A., Lee, J.Y., Souza, S., Trinh, Y.T., Connelly, S.M., Dumont, M.E., Dean, M. and Urbatsch, I.L. (2007) Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46: 7992–8003.PubMedGoogle Scholar
  22. Dalbey, R.E. and Kuhn, A. (2004) YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J. Cell Biol. 166: 769–774.PubMedGoogle Scholar
  23. Daniell, H., Streatfield, S.J. and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6: 219–226.PubMedGoogle Scholar
  24. Daniell, H., Khan, M.S. and Allison, L. (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7: 84–91.PubMedGoogle Scholar
  25. Davies, A.H. (1994) Current methods for manipulating baculoviruses. Biotechnology (NY) 12: 47–50.Google Scholar
  26. de Groot, B.L., Engel, A. and Grubmuller, H. (2001) A refined structure of human aquaporin-1. FEBS Lett. 504: 206–211.PubMedGoogle Scholar
  27. de Marco. A. (2007) Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat. Protoc. 2: 2632–2639.PubMedGoogle Scholar
  28. de Ruyter, P.G., Kuipers, O.P. and de Vos, W.M. (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662–3667.PubMedGoogle Scholar
  29. de Smet. L., Kostanjevecki, V., Guisez, Y. and Van Beeumen, J. (2001) A novel system for heterologous expression of flavocytochrome c in phototrophic bacteria using the Allochromatium vinosum rbcA promoter. Arch. Microbiol. 176: 19–28.PubMedGoogle Scholar
  30. de Vos, W.M. (1999) Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2:289–295.PubMedGoogle Scholar
  31. Drew, D., Sjostrand, D., Nilsson, J., Urbig, T., Chin, C.N., de Gier, J.W. and von, H.H. (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc. Natl. Acad. Sci. USA 99: 2690–2695.PubMedGoogle Scholar
  32. Drew, D., Lerch, M., Kunji, E., Slotboom, D.J. and de Gier, J.W. (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3: 303–313.PubMedGoogle Scholar
  33. Drew, D.E., G. von, H., Nordlund, P. and de Gier, J.W. (2001) Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Lett. 507: 220–224.Google Scholar
  34. Drew, D., Newstead, S., Sonoda, Y., Kim, H., von, H.G. and Iwata, S. (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat. Protoc. 3: 784–798.PubMedGoogle Scholar
  35. Du, D., Kato, T., Suzuki, F. and Park, E.Y. (2009) Expression of protein complex comprising the human prorenin and (pro)renin receptor in silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmids for improving biological function. Mol. Biotechnol. 43: 154–161.PubMedGoogle Scholar
  36. El, K.M., van Roosmalen, M.L., Jager, D., Metselaar, H., Permentier, H., Leenhouts, K. and Broos, J. (2008) Lactococcus lactis as expression host for the biosynthetic incorporation of tryptophan analogues into recombinant proteins. Biochem. J. 409: 193–198.Google Scholar
  37. Elias, C.B., Jardin, B. and Kamen, A. (2007) Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system. Methods Mol. Biol. 388: 225–246.PubMedGoogle Scholar
  38. Felder, C.C., Veluz, J.S., Williams, H.L., Briley, E.M. and Matsuda, L.A. (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol. Pharmacol. 42: 838–845.PubMedGoogle Scholar
  39. Frelet-Barrand, A., Boutigny, S., Moyet, L., Deniaud, A., Seigneurin-Berny, D., Salvi, D., Bernaudat, F., Richaud, P., Pebay-Peyroula, E., Joyard, J. and Rolland, N. (2010) Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS. One. 5: e8746.PubMedGoogle Scholar
  40. Funes, S., Hasona, A., Bauerschmitt, H., Grubbauer, C., Kauff, K., Collins, R., Crowley, P.J., Palmer, S.R., Brady, L.J. and Herrmann, J.M. (2009) Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc. Natl. Acad. Sci. USA 106: 6656–6661.PubMedGoogle Scholar
  41. Geertsma, E.R. and Poolman, B. (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat. Methods 4: 705–707.PubMedGoogle Scholar
  42. Geertsma, E.R., Groeneveld, M., Slotboom, D.J. and Poolman, B. (2008) Quality control of overexpressed membrane proteins. Proc. Natl. Acad. Sci. USA 105: 5722–5727.PubMedGoogle Scholar
  43. Geissendorfer, M. and Hillen, W. (1990) Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl. Microbiol. Biotechnol. 33: 657–663.PubMedGoogle Scholar
  44. Gomez, N., Carrillo, C., Salinas, J., Parra, F., Borca, M.V. and Escribano, J.M. (1998) Expression of immunogenic glycoprotein S polypeptides from transmissible gastroenteritis coronavirus in transgenic plants. Virology 249: 352–358.PubMedGoogle Scholar
  45. Gomord, V. and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7: 171–181.PubMedGoogle Scholar
  46. Gonzales, E.B., Kawate, T. and Gouaux, E. (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460: 599–604.PubMedGoogle Scholar
  47. Gonzalez-Montalban, N., Garcia-Fruitos, E. and Villaverde, A. (2007) Recombinant protein solubility – does more mean better? Nat. Biotechnol. 25: 718–720.PubMedGoogle Scholar
  48. Gordon, E., Horsefield, R., Swarts, H.G., de Pont, J.J., Neutze, R. and Snijder, A. (2008) Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expr. Purif. 62: 1–8.PubMedGoogle Scholar
  49. Griffith, D.A., Delipala, C., Leadsham, J., Jarvis, S.M. and Oesterhelt, D. (2003) A novel yeast expression system for the overproduction of quality-controlled membrane proteins. FEBS Lett. 553: 45–50.PubMedGoogle Scholar
  50. Grisshammer, R., Duckworth, R. and Henderson, R. (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem. J. 295(Pt 2): 571–576.PubMedGoogle Scholar
  51. Grisshammer, R. and Tate, C.G. (1995) Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28: 315–422.PubMedGoogle Scholar
  52. Grisshammer, R. (2006) Understanding recombinant expression of membrane proteins. Curr. Opin. Biotechnol. 17: 337–340.PubMedGoogle Scholar
  53. Hannig, G. and Makrides, S.C. (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16: 54–60.PubMedGoogle Scholar
  54. Haq, T.A., Mason, H.S., Clements, J.D. and Arntzen, C.J. (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714–716.PubMedGoogle Scholar
  55. Harwood, S. (2007) Small-scale protein production with the baculovirus expression vector system. Methods Mol. Biol. 388: 211–224.PubMedGoogle Scholar
  56. Hasona, A., Crowley, P.J., Levesque, C.M., Mair, R.W., Cvitkovitch, D.G., Bleiweis, A.S. and Brady, L.J. (2005) Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc. Natl. Acad. Sci. USA 102: 17466–17471.PubMedGoogle Scholar
  57. Helenius, A. and Aebi, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73: 1019–1049.PubMedGoogle Scholar
  58. Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. and Fujiyoshi, Y. (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol. 355: 628–639.PubMedGoogle Scholar
  59. Hollenberg, C.P. and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8: 554–560.PubMedGoogle Scholar
  60. Huber, D., Boyd, D., Xia, Y., Olma, M.H., Gerstein, M. and Beckwith, J. (2005) Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187: 2983–2991.PubMedGoogle Scholar
  61. Jacobson, A. and Peltz, S.W. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–739.PubMedGoogle Scholar
  62. Jarvie, K.R., Tiberi, M., Silvia, C., Gingrich, J.A. and Caron, M.G. (1993) Molecular cloning, stable expression and desensitization of the human dopamine D1b/D5 receptor. J. Recept. Res. 13: 573–590.PubMedGoogle Scholar
  63. Jidenko, M., Nielsen, R.C., Sorensen, T.L., Moller, J.V., Le, M.M., Nissen, P. and Jaxel, C. (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 102: 11687–11691.PubMedGoogle Scholar
  64. Jin, R., Singh, S.K., Gu, S., Furukawa, H., Sobolevsky, A.I., Zhou, J., Jin, Y. and Gouaux, E. (2009) Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J. 28: 1812–1823.PubMedGoogle Scholar
  65. Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–917.PubMedGoogle Scholar
  66. Kalmbach, R., Chizhov, I., Schumacher, M.C., Friedrich, T., Bamberg, E. and Engelhard, M. (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol. 371: 639–648.PubMedGoogle Scholar
  67. Kappler, U. and McEwan, A.G. (2002) A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella. FEBS Lett. 529: 208–214.PubMedGoogle Scholar
  68. Kapust, R.B. and Waugh, D.S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8: 1668–1674.PubMedGoogle Scholar
  69. Kawate, T., Michel, J.C., Birdsong, W.T and Gouaux, E. (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460: 592–598.PubMedGoogle Scholar
  70. Keynan, S., Suh, Y.J., Kanner, B.I. and Rudnick, G. (1992) Expression of a cloned gamma-aminobutyric acid transporter in mammalian cells. Biochemistry 31: 1974–1979.PubMedGoogle Scholar
  71. Kiefer, H. (2003) In vitro folding of alpha-helical membrane proteins. Biochim. Biophys. Acta 1610: 57–62.PubMedGoogle Scholar
  72. Kigawa, T., Yabuki, T., Matsuda, N., Matsuda, T., Nakajima, R., Tanaka, A. and Yokoyama, T. (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J. Struct. Funct. Genomics 5: 63–68.PubMedGoogle Scholar
  73. Kim, D.M. and Choi, C.Y. (1996) A semicontinuous prokaryotic coupled transcription//translation system using a dialysis membrane. Biotechnol. Prog. 12: 645–649.PubMedGoogle Scholar
  74. Klaassen, C.H. and DeGrip, W.J. (2000) Baculovirus expression system for expression and characterization of functional recombinant visual pigments. Methods Enzymol. 315: 12–29.PubMedGoogle Scholar
  75. Koch, H.G., Hengelage, T., Neumann-Haefelin, C., MacFarlane, J., Hoffschulte, H.K., Schimz, K.L., Mechler, B. and Muller, M. (1999) In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol. Biol. Cell 10: 2163–2173.PubMedGoogle Scholar
  76. Korepanova, A., Gao, F.P., Hua, Y., Qin, H., Nakamoto, R.K. and Cross, T.A. (2005) Cloning and expression of multiple integral membrane proteins from Mycobacterium tuberculosis in Escherichia coli. Protein Sci. 14: 148–158.PubMedGoogle Scholar
  77. Kost, T.A., Condreay, J.P. and Jarvis, D.L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23: 567–575.PubMedGoogle Scholar
  78. Kunji, E.R., Slotboom, D.J. and Poolman, B. (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim. Biophys. Acta 1610: 97–108.PubMedGoogle Scholar
  79. Kurland, C. and Gallant, J. (1996) Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7: 489–493.PubMedGoogle Scholar
  80. Kushnir, S., Gase, K., Breitling, R. and Alexandrov, K. (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr. Purif. 42: 37–46.PubMedGoogle Scholar
  81. Lau, F.W., Nauli, S., Zhou, Y. and Bowie, J.U. (1999) Changing single side-chains can greatly enhance the resistance of a membrane protein to irreversible inactivation. J. Mol. Biol. 290: 559–564.PubMedGoogle Scholar
  82. Lenoir, G., Menguy, T., Corre, F., Montigny, C., Pedersen, P.A., Thines, D., Le, M.M. and Falson, P. (2002) Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. Biochim. Biophys. Acta 1560: 67–83.PubMedGoogle Scholar
  83. Lewinson, O., Lee, A.T. and Rees, D.C. (2008) The funnel approach to the precrystallization production of membrane proteins. J. Mol. Biol. 377: 62–73.PubMedGoogle Scholar
  84. Li, M., Hays, F.A., Roe-Zurz, Z., Vuong, L., Kelly, L., Ho, C.M., Robbins, R.M., Pieper, U., O'Connell, J.D., III, Miercke, L.J., Giacomini, K.M., Sali, A. and Stroud, R.M. (2009) Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening. J. Mol. Biol. 385: 820–830.PubMedGoogle Scholar
  85. Li, Y., Kijac, A.Z., Sligar, S.G. and Rienstra, C.M. (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys. J. 91: 3819–3828.PubMedGoogle Scholar
  86. Liang, B. and Tamm, L.K. (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc. Natl. Acad. Sci. USA 104: 16140–16145.PubMedGoogle Scholar
  87. Linares, D.M., Geertsma, E.R. and Poolman, B. (2010) Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins. J. Mol. Biol. 401: 45–55.PubMedGoogle Scholar
  88. Link, A.J., Skretas, G., Strauch, E.M., Chari, N.S. and Georgiou, G. (2008) Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Sci. 17: 1857–1863.PubMedGoogle Scholar
  89. Liu, Q., Li, M.Z., Leibham, D., Cortez, D. and Elledge, S.J. (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8: 1300–1309.PubMedGoogle Scholar
  90. Llull, D. and Poquet, I. (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398–5406.PubMedGoogle Scholar
  91. Locher, K.P., Lee, A.T. and Rees, D.C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296: 1091–1098.PubMedGoogle Scholar
  92. Luckow, V.A. (1993) Baculovirus systems for the expression of human gene products. Curr. Opin. Biotechnol. 4: 564–572.PubMedGoogle Scholar
  93. Luckow, V.A., Lee, S.C., Barry, G.F. and Olins, P.O. (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67: 4566–4579.PubMedGoogle Scholar
  94. Luecke, H., Richter, H.T. and Lanyi, J.K. (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280: 1934–1937.PubMedGoogle Scholar
  95. Madin, K., Sawasaki, T., Ogasawara, T. and Endo, Y. (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97: 559–564.PubMedGoogle Scholar
  96. Maliga, P. (2002) Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5: 164–172.PubMedGoogle Scholar
  97. Mancia, F., Patel, S.D., Rajala, R.W., Scherer, P.E., Nemes, A., Schieren, I., Hendrickson, W.A. and Shapiro, L. (2004) Optimization of protein production in mammalian cells with a coexpressed fluorescent marker. Structure. 12: 1355–1360.PubMedGoogle Scholar
  98. Mancia, F. and Hendrickson, W.A. (2007) Expression of recombinant G-protein coupled receptors for structural biology. Mol. Biosyst. 3: 723–734.PubMedGoogle Scholar
  99. Marreddy, R.K., Geertsma, E.R., Permentier, H.P., Pinto, J.P., Kok, J. and Poolman, B. (2010) Amino acid accumulation limits the overexpression of proteins in Lactococcus lactis. PLoS ONE. 5: e10317.PubMedGoogle Scholar
  100. Marreddy, R.K., Pinto, J.P., Wolters, J.C., Geertsma, E.R., Fusetti, F., Permentier, H., Kuipers, O.P., Kok, J. and Poolman, B. (2011) The response of Lactococcus lactis to membrane protein production. Under evaluation.Google Scholar
  101. Masi, M., Pages, J.M. and Pradel, E. (2003) Overexpression and purification of the three components of the Enterobacter aerogenes AcrA-AcrB-TolC multidrug efflux pump. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 786: 197–205.PubMedGoogle Scholar
  102. Mason, H.S., Lam, D.M. and Arntzen, C.J. (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 89: 11745–11749.PubMedGoogle Scholar
  103. Massey-Gendel, E., Zhao, A., Boulting, G., Kim, H.Y., Balamotis, M.A., Seligman, L.M., Nakamoto, R.K. and Bowie, J.U. (2009) Genetic selection system for improving recombinant membrane protein expression in E. coli. Protein Sci. 18: 372–383.PubMedGoogle Scholar
  104. Miroux, B. and Walker, J.E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260: 289–298.PubMedGoogle Scholar
  105. Miyoshi, A., Jamet, E., Commissaire, J., Renault, P., Langella, P. and Azevedo, V. (2004) A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205–212.PubMedGoogle Scholar
  106. Monne, M., Chan, K.W., Slotboom, D.J. and Kunji, E.R. (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci. 14: 3048–3056.PubMedGoogle Scholar
  107. Moore, M., Harrison, M.S., Peterson, E.C. and Henry, R. (2000) Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275: 1529–1532.PubMedGoogle Scholar
  108. Morth, J.P., Pedersen, B.P., Toustrup-Jensen, M.S., Sorensen, T.L., Petersen, J., Andersen, J.P., Vilsen, B. and Nissen, P. (2007) Crystal structure of the sodium-potassium pump. Nature 450: 1043–1049.PubMedGoogle Scholar
  109. Mulligan, C., Geertsma, E.R., Severi, E., Kelly, D.J., Poolman, B. and Thomas, G.H. (2009) The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc. Natl. Acad. Sci. USA 106: 1778–1783.PubMedGoogle Scholar
  110. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A. and Fujiyoshi, Y. (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605.PubMedGoogle Scholar
  111. Nagamori, S., Smirnova, I.N. and Kaback, H.R. (2004) Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165: 53–62.PubMedGoogle Scholar
  112. Newbury, S.F., Smith, N.H., Robinson, E.C., Hiles, I.D. and Higgins, C.F. (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48: 297–310.PubMedGoogle Scholar
  113. Newstead, S., Kim, H., von, H.G., Iwata, S. and Drew, D. (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104: 13936–13941.PubMedGoogle Scholar
  114. Ng, D.T., Brown, J.D. and Walter, P. (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134: 269–278.PubMedGoogle Scholar
  115. Niebauer, R.T., Wedekind, A. and Robinson, A.S. (2004) Decreases in yeast expression yields of the human adenosine A2a receptor are a result of translational or post-translational events. Protein Expr. Purif. 37: 134–143.PubMedGoogle Scholar
  116. Niu, Y., Kong, J. and Xu, Y. (2008) A novel GFP-fused eukaryotic membrane protein expression system in Lactococcus lactis and its application to overexpression of an Elongase. Curr. Microbiol. 57: 423–428.PubMedGoogle Scholar
  117. Nomura, S.M., Kondoh, S., Asayama, W., Asada, A., Nishikawa, S. and Akiyoshi, K. (2008) Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis. J. Biotechnol. 133: 190–195.PubMedGoogle Scholar
  118. Nozawa, A., Nanamiya, H., Miyata, T., Linka, N., Endo, Y., Weber, A.O. and Tozawa, Y. (2007) A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters. Plant Cell Physiol 48: 1815–1820.PubMedGoogle Scholar
  119. Olesen, C., Picard, M., Winther, A.M., Gyrup, C., Morth, J.P., Oxvig, C., Moller, J.V. and Nissen, P. (2007) The structural basis of calcium transport by the calcium pump. Nature 450: 1036–1042.PubMedGoogle Scholar
  120. Opekarova, M. and Tanner, W. (2003) Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim. Biophys. Acta 1610: 11–22.PubMedGoogle Scholar
  121. Osterberg, M., Kim, H., Warringer, J., Melen, K., Blomberg, A. and von, H.G (2006) Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103: 11148–11153.PubMedGoogle Scholar
  122. Palanivelu, D.V., Kozono, D.E., Engel, A., Suda, K., Lustig, A., Agre, P. and Schirmer, T. (2006) Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D crystals. J. Mol. Biol. 355: 605–611.PubMedGoogle Scholar
  123. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le, I, T., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289: 739–745.PubMedGoogle Scholar
  124. Pinto, J.P., Kuipers, O.P., Marreddy, R.K., Poolman, B. and Kok, J. (2011) Efficient overproduction of membrane proteins in Lactococcus lactis relies on the cell envelope stress sensor/regulator couple CesSR. Under evaluation.Google Scholar
  125. Quick, M. and Wright, E.M. (2002) Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc. Natl. Acad. Sci. USA 99: 8597–8601.PubMedGoogle Scholar
  126. Quick, M. and Javitch, J.A. (2007) Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104: 3603–3608.PubMedGoogle Scholar
  127. Rapoport, T.A. (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450: 663–669.PubMedGoogle Scholar
  128. Reuben, M., Rising, L., Prinz, C., Hersey, S. and Sachs, G. (1994) Cloning and expression of the rabbit gastric CCK-A receptor. Biochim. Biophys. Acta 1219: 321–327.PubMedGoogle Scholar
  129. Roosild, T.P., Greenwald, J., Vega, M., Castronovo, S., Riek, R. and Choe, S. (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307: 1317–1321.PubMedGoogle Scholar
  130. Sarkar, C.A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E. and Pluckthun, A. (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc. Natl. Acad. Sci. USA 105: 14808–14813.PubMedGoogle Scholar
  131. Savage, D.F., Anderson, C.L., Robles-Colmenares, Y., Newby, Z.E. and Stroud, R.M. (2007) Cell-free complements in vivo expression of the E. coli membrane proteome. Protein Sci. 16: 966–976.PubMedGoogle Scholar
  132. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., Kamura, N., Ogasawara, T., Kuroita, T. and Endo, Y. (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514: 102–105.PubMedGoogle Scholar
  133. Sawasaki, T., Gouda, M.D., Kawasaki, T., Tsuboi, T., Tozawa, Y., Takai, K. and Endo, Y. (2005) The wheat germ cell-free expression system: methods for high-throughput materialization of genetic information. Methods Mol. Biol. 310: 131–144.PubMedGoogle Scholar
  134. Schahs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T. and Steinkellner, H. (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol. J. 5: 657–663.PubMedGoogle Scholar
  135. Schumann, W. (2007) Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 62: 137–189.PubMedGoogle Scholar
  136. Schunemann, D. (2004) Structure and function of the chloroplast signal recognition particle. Curr. Genet. 44: 295–304.PubMedGoogle Scholar
  137. Schurmann, A., Monden, I., Joost, H.G. and Keller, K. (1992) Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells. Biochim. Biophys. Acta 1131:245–252.PubMedGoogle Scholar
  138. Schwarz, D., Junge, F., Durst, F., Frolich, N., Schneider, B., Reckel, S., Sobhanifar, S., Dotsch, V. and Bernhard, F. (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2: 2945–2957.PubMedGoogle Scholar
  139. Scotti, P.A., Urbanus, M.L., Brunner, J., de Gier, J.W., von, H.G., van der Does, C., Driessen, A.J., Oudega, B. and Luirink, J. (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 19: 542–549.PubMedGoogle Scholar
  140. Serek, J., Bauer-Manz, G., Struhalla, G., van den, B.L., Kiefer, D., Dalbey, R. and Kuhn, A. (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23: 294–301.PubMedGoogle Scholar
  141. Serrano-Vega, M.J., Magnani, F., Shibata, Y. and Tate, C.G. (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc. Natl. Acad. Sci. USA 105: 877–882.PubMedGoogle Scholar
  142. Shukla, A.K., Haase, W., Reinhart, C. and Michel, H. (2007) Heterologous expression and characterization of the recombinant bradykinin B2 receptor using the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 55: 1–8.PubMedGoogle Scholar
  143. Sobolevsky, A.I., Rosconi, M.P. and Gouaux, E. (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745–756.PubMedGoogle Scholar
  144. Sokolova, O., Kolmakova-Partensky, L. and Grigorieff, N. (2001) Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9: 215–220.PubMedGoogle Scholar
  145. Sorensen, H.P., Sperling-Petersen, H.U. and Mortensen, K.K. (2003) Production of recombinant thermostable proteins expressed in Escherichia coli: completion of protein synthesis is the bottleneck. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 786: 207–214.PubMedGoogle Scholar
  146. Sreekrishna, K., Brankamp, R.G., Kropp, K.E., Blankenship, D.T., Tsay, J.T., Smith, P.L., Wierschke, J.D., Subramaniam, A. and Birkenberger, L.A. (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast. Pichia Pastoris. Gene 190: 55–62.Google Scholar
  147. Standfuss, J., Xie, G., Edwards, P.C., Burghammer, M., Oprian, D.D. and Schertler, G.F. (2007) Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372: 1179–1188.PubMedGoogle Scholar
  148. Stock, D., Leslie, A.G. and Walker, J.E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705.PubMedGoogle Scholar
  149. Streatfield, S.J. (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2–15.PubMedGoogle Scholar
  150. Summers, M.D. (2006) Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv. Virus Res. 68: 3–73.PubMedGoogle Scholar
  151. Surade, S., Klein, M., Stolt-Bergner, P.C., Muenke, C., Roy, A. and Michel, H. (2006) Comparative analysis and "expression space" coverage of the production of prokaryotic membrane proteins for structural genomics. Protein Sci. 15: 2178–2189.PubMedGoogle Scholar
  152. Tackaberry, E.S., Dudani, A.K., Prior, F., Tocchi, M., Sardana, R., Altosaar, I. and Ganz, P.R. (1999) Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17: 3020–3029.PubMedGoogle Scholar
  153. Takegawa, K., Tohda, H., Sasaki, M., Idiris, A., Ohashi, T., Mukaiyama, H., Giga-Hama, Y. and Kumagai, H. (2009) Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol. Appl. Biochem. 53: 227–235.PubMedGoogle Scholar
  154. Tate, C.G. and Grisshammer, R. (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol. 14: 426–430.PubMedGoogle Scholar
  155. Tate, C.G., Whiteley, E. and Betenbaugh, M.J. (1999) Molecular chaperones stimulate the functional expression of the cocaine-sensitive serotonin transporter. J. Biol. Chem. 274: 17551–17558.PubMedGoogle Scholar
  156. Tate, C.G. (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 504: 94–98.PubMedGoogle Scholar
  157. Tate, C.G., Haase, J., Baker, C., Boorsma, M., Magnani, F., Vallis, Y. and Williams, D.C. (2003) Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. Biochim. Biophys. Acta 1610: 141–153.PubMedGoogle Scholar
  158. Terpe, K. (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211–222.PubMedGoogle Scholar
  159. Thuy Le, A.T. and Schumann, W. (2007) A novel cold-inducible expression system for Bacillus subtilis. Protein Expr. Purif. 53: 264–269.Google Scholar
  160. Tolia, N.H. and Joshua-Tor, L. (2006) Strategies for protein coexpression in Escherichia coli. Nat. Methods 3: 55–64.PubMedGoogle Scholar
  161. Torizawa, T., Shimizu, M., Taoka, M., Miyano, H. and Kainosho, M. (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J. Biomol. NMR 30: 311–325.PubMedGoogle Scholar
  162. Trometer, C. and Falson, P. (2010) Mammalian membrane protein expression in baculovirus-infected insect cells. Methods Mol. Biol. 601: 105–117.PubMedGoogle Scholar
  163. Turner, G.J., Miercke, L.J., Mitra, A.K., Stroud, R.M., Betlach, M.C. and Winter-Vann, A. (1999) Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein. Protein Expr. Purif. 17: 324–338.PubMedGoogle Scholar
  164. Ulrich, C.D., Ferber, I., Holicky, E., Hadac, E., Buell, G. and Miller, L.J. (1993) Molecular cloning and functional expression of the human gallbladder cholecystokinin A receptor. Biochem. Biophys. Res. Commun. 193: 204–211.PubMedGoogle Scholar
  165. Unger, V.M., Kumar, N.M., Gilula, N.B. and Yeager, M. (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283: 1176–1180.PubMedGoogle Scholar
  166. van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N. and Driessen, A.J. (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165: 213–222.PubMedGoogle Scholar
  167. van der Vossen, J.M., van der Lelie, D. and Venema, G. (1987) Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl. Environ. Microbiol. 53: 2452–2457.PubMedGoogle Scholar
  168. Voet-van-Vormizeele, J. and Groth, G. (2003) High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein Expr. Purif. 32: 89–94.PubMedGoogle Scholar
  169. Voss, T., Ergulen, E., Ahorn, H., Kubelka, V., Sugiyama, K., Maurer-Fogy, I. and Glossl, J. (1993) Expression of human interferon omega 1 in Sf9 cells. No evidence for complex-type N-linked glycosylation or sialylation. Eur. J. Biochem. 217: 913–919.PubMedGoogle Scholar
  170. Wagner, S., Bader, M.L., Drew, D. and de Gier, J.W. (2006) Rationalizing membrane protein overexpression. Trends Biotechnol. 24: 364–371.PubMedGoogle Scholar
  171. Wagner, S., Baars, L., Ytterberg, A.J., Klussmeier, A., Wagner, C.S., Nord, O., Nygren, P.A., van Wijk, K.J. and de Gier, J.W. (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell Proteomics. 6: 1527–1550.PubMedGoogle Scholar
  172. Wagner, S., Klepsch, M.M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., Hogbom, M., van Wijk, K.J., Slotboom, D.J., Persson, J.O. and de Gier, J.W. (2008a) Tuning Escherichia coli for membrane protein overexpression. Proc. Natl. Acad. Sci. USA 105: 14371–14376.PubMedGoogle Scholar
  173. Wagner, S., Pop, O.I., Haan, G.J., Baars, L., Koningstein, G., Klepsch, M.M., Genevaux, P., Luirink, J. and de Gier, J.W. (2008b) Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J. Biol. Chem. 283: 17881–17890.PubMedGoogle Scholar
  174. Walhout, A.J., Temple, G.F., Brasch, M.A., Hartley, J.L., Lorson, M.A., van den Heuvel, S. and Vidal, M. (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328: 575–592.PubMedGoogle Scholar
  175. Walravens, K., Matheise, J.P., Knott, I., Coppe, P., Collard, A., Didembourg, C., Dessy, F., Kettmann, R. and Letesson, J.J. (1996) Immunological response of mice to the bovine respiratory syncytial virus fusion glycoprotein expressed in recombinant baculovirus infected insect cells. Arch. Virol. 141: 2313–2326.PubMedGoogle Scholar
  176. Walter, P., Ibrahimi, I. and Blobel, G. (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91: 545–550.PubMedGoogle Scholar
  177. Warne, T., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G. and Schertler, G.F. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454: 486–491.PubMedGoogle Scholar
  178. Weinshank, R.L., Zgombick, J.M., Macchi, M.J., Branchek, T.A. and Hartig, P.R. (1992) Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta. Proc. Natl. Acad. Sci. USA 89: 3630–3634.PubMedGoogle Scholar
  179. Weiss, H.M., Haase, W., Michel, H. and Reilander, H. (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett. 377: 451–456.PubMedGoogle Scholar
  180. Weiss, H.M., Haase, W. and Reilander, H. (1998) Expression of an integral membrane protein, the 5HT5A receptor. Methods Mol. Biol. 103: 227–239.PubMedGoogle Scholar
  181. White, M.A., Clark, K.M., Grayhack, E.J. and Dumont, M.E. (2007) haracteristics affecting expression and solubilization of yeast membrane proteins. J. Mol. Biol. 365: 621–636.PubMedGoogle Scholar
  182. White, S.H. (2009) Biophysical dissection of membrane proteins. Nature 459: 344–346.PubMedGoogle Scholar
  183. Xia, D., Yu, C.A., Kim, H., Xia, J.Z., Kachurin, A.M., Zhang, L., Yu, L. and Deisenhofer, J. (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60–66.PubMedGoogle Scholar
  184. Zhang, G., Hubalewska, M. and Ignatova, Z. (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16: 274–280.PubMedGoogle Scholar
  185. Zhang, G. and Ignatova, Z. (2009) Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS. One 4: e5036.PubMedGoogle Scholar
  186. Zweers, J.C., Wiegert, T. and van Dijl, J.M. (2009) Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. Appl. Environ. Microbiol. 75: 7356–7364.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ravi K.R. Marreddy
    • 1
  • Eric R. Geertsma
    • 1
  • Bert Poolman
    • 1
    Email author
  1. 1.Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre and Zernike Institute for Advanced Materials, University of GroningenGroningenThe Netherlands

Personalised recommendations