Advertisement

Time-Resolved FT-IR Spectroscopy for the Elucidation of Protein Function

  • Michael Schleeger
  • Ionela Radu
  • Joachim HeberleEmail author
Conference paper

Abstract

Time-resolved Fourier transform infrared spectroscopy (FT-IR) has been proven to be an excellent method with important applications in bioscience. In particular, it is possible to monitor the temporal evolution of the reaction mechanism of complex machineries as membrane proteins, where other techniques encounter significant experimental difficulties. Here, we summarize the classical principles and experimental realizations of time-resolved FT-IR spectroscopy together with new developments realized in our laboratory. Examples from applications to retinal proteins are reviewed that showcase the impact of time-resolved FT-IR spectroscopy on the understanding of protein reactions on the level of single bonds.

Keywords

Step-scan spectroscopy Vibrational spectroscopy Retinal proteins Microfluidics Heme proteins 

References

  1. Breton, J. and Nabedryk, E. (1998) Proton uptake upon quinone reduction in bacterial reaction centers: IR signature and possible participation of a highly polarizable hydrogen bond network. Photosynth. Res. 55: 301–307.CrossRefGoogle Scholar
  2. Chen, P.Y. and Palmer, R.A. (1997) Ten-nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy: applications to excited states of transition metal complexes. Appl. Spectrosc. 51(4): 580–583.CrossRefGoogle Scholar
  3. Chizhov, I., Chernavskii, D.S., Engelhard, M., Mueller, K.H., Zubov, B.V. and Hess, B. (1996) Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71(5): 2329–2345.PubMedCrossRefGoogle Scholar
  4. Dioumaev, A.K. (2001) Infrared methods for monitoring the protonation state of carboxylic amino acids in the photocycle of bacteriorhodopsin. Biochemistry (Mosc) 66(11): 1269–1276.CrossRefGoogle Scholar
  5. Efremov, R., Gordeliy, V.I., Heberle, J. and Büldt, G. (2006) Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. Biophys. J. 91(4): 1441–1451.PubMedCrossRefGoogle Scholar
  6. Engelhard, M., Gerwert, K., Hess, B., Kreutz, W. and Siebert, F. (1985) Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. Biochemistry 24(2): 400–407.PubMedCrossRefGoogle Scholar
  7. Garczarek, F., Wang, J., El-Sayed, M.A. and Gerwert, K. (2004) The assignment of the different infrared continuum absorbance changes observed in the 3000–1800-cm–1 region during the bacteriorhodopsin photocycle. Biophys. J. 87(4): 2676–1682.CrossRefGoogle Scholar
  8. Garczarek, F. and Gerwert, K. (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439(7072): 109–112.PubMedCrossRefGoogle Scholar
  9. Griffiths, P.R. and de Haseth, J.A. (1986) Fourier transform infrared spectrometry. Wiley, New York, NY, Vol. 83.Google Scholar
  10. Heberle, J., Büldt, G., Koglin, E., Rosenbusch, J.P. and Landau, E.M. (1998) Assessing the functionality of a membrane protein in a three-dimensional crystal. J. Mol. Biol. 281(4): 587–592.PubMedCrossRefGoogle Scholar
  11. Heberle, J. (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim. Biophys. Acta 1458(1): 135–147.PubMedCrossRefGoogle Scholar
  12. Heberle, J., Fitter, J., Sass, H.J. and Büldt, G. (2000) Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys. Chem. 85(2–3): 229–248.PubMedCrossRefGoogle Scholar
  13. Heberle, J. (2004) A local area network of protonated water molecules. Biophys. J. 87(4): 2105–2106.PubMedCrossRefGoogle Scholar
  14. Heitbrink, D., Sigurdson, H., Bolwien, C., Brzezinski, P. and Heberle, J. (2002) Transient binding of CO to CuB in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation. Biophys. J. 82(1 Pt 1): 1–10.PubMedCrossRefGoogle Scholar
  15. Kaun, N., Kulka, S., Frank, J., Schade, U., Vellekoop, M.J., Harasek, M. and Lendl, B. (2006) Towards biochemical reaction monitoring using FT-IR synchrotron radiation. Analyst 131(4): 489–494.PubMedCrossRefGoogle Scholar
  16. Lozier, R.H., Bogomolni, R.A. and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys. J. 15(9): 955–962.PubMedCrossRefGoogle Scholar
  17. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. and Lanyi, J.K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291(4): 899–911.PubMedCrossRefGoogle Scholar
  18. Maeda, A. (1995) Application of FTIR spectroscopy to the structural study on the function of bacteriorhodopsin. Isr. J. Chem. 35: 387–400.Google Scholar
  19. Manning, C.J., Palmer, R.A. and Chao, J.L. (1991) Step-scan Fourier-transform infrared spectrometer. Rev. Sci. Instrum. 62(5): 1219–1229.CrossRefGoogle Scholar
  20. Mathias, G. and Marx, D. (2007) Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 104(17): 6980–6985.PubMedCrossRefGoogle Scholar
  21. Rammelsberg, R., Heßling, B., Chorongiewski, H. and Gerwert, K. (1997) Molecular reaction mechanism of proteins monitored by nanosecond step-scan FT-IR difference spectroscopy. Appl. Spectrosc. 51(4): 558–562.CrossRefGoogle Scholar
  22. Rammelsberg, R., Huhn, G., Lübben, M. and Gerwert, K. (1998) Bacteriorhodopsin’s intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37(14): 5001–5009.PubMedCrossRefGoogle Scholar
  23. Riesle, J., Oesterhelt, D., Dencher, N.A. and Heberle, J. (1996) D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry 35(21): 6635–6643.PubMedCrossRefGoogle Scholar
  24. Schleeger, M., Wagner, C., Vellekoop, M.J., Lendl, B. and Heberle, J. (2009) Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal. Bioanal. Chem. 394(7): 1869–1877.PubMedCrossRefGoogle Scholar
  25. Uhmann, W., Becker, A., Taran, C. and Siebert, F. (1991) Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl. Spectrosc. 45: 390–397.CrossRefGoogle Scholar
  26. Weidlich, O. and Siebert, F. (1993) Time resolved step-scan FTIR investigations of the transition from KL to L in the bacteriorhodpsin photocycle: identification of chromophore twists by assigning hydrogen-out-of-plane (HOOP) bending vibrations. Appl. Spectrosc. 47 (9):1394–1400.CrossRefGoogle Scholar
  27. Zscherp, C. and Heberle, J. (1997) Infrared difference spectra of the intermediates L, M, N, and O of the bacteriorhodopsin photoreaction obtained by time-resolved attenuated total reflection spectroscopy. J. Phys. Chem. B 101(49): 10542–10547.CrossRefGoogle Scholar
  28. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D. and Heberle, J. (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc. Natl. Acad. Sci. USA 96(10): 5498–5503.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Schleeger
    • 1
  • Ionela Radu
    • 1
  • Joachim Heberle
    • 1
    Email author
  1. 1.Experimental Molecular Biophysics, Department of PhysicsFree University of BerlinBerlinGermany

Personalised recommendations