Actual Three-Dimensional Stresses in Composite Structures and in Local Effects in Homogeneous Structures. Case Studies

  • J. T. Pindera
Part of the NATO ASI Series book series (ASHT, volume 43)


The major purpose of this paper is to present empirical evidence on the actual stresses in the components of the homogeneous and adhesively bonded composite structures. The presented evidence was obtained by using the advanced strain gages technique, and the theories and techniques of three-dimensional isodyne stress analysis. It is shown that a two-dimensional analytical treatment often yields errors not only in the magnitude but also in the sign of the evaluated stresses. Validity of some basis notions accepted in engineering mechanics is discussed, and ranges of their practical applications in composites designing are suggested. Case studies encompass: examples of incorrect predictions of some analytical solutions; stresses in the region on notches; stresses along the crack tip; lack of uniqueness in formulation of the stress concentration factor and of the stress intensity factor; stresses in a double lap joint; stresses in a three-ply structure, three-dimensional stresses caused by local effects. It is shown that the isodyne stress analysis supplies reliable data on the actual stress states. Such data are needed for testing analytical predictions in the stress analysis, and for testing reliability of various experimental techniques. They are also needed as a foundation for development of more advanced analytical simulations of stress states, which would be able to account for the fact that the stresses in composites are inherently three-dimensional.


Plane Stress State Experimental Mechanics Normal Stress Component Normal Stress Distribution Lamination Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantu, P. (1958) I — Étude des contraintes dans les milieux hétérogènes. Application au beton II — Utilisation des réseaux pour l’étude des déformations. Laboratoire Central des Ponts et Chaussees, Publication 57–6. Annales de l’Instutut Technique du Bâtiment et des Travaux Publics, Paris, pp. 17–25.Google Scholar
  2. 2.
    Davidson, T. S., Wadley, N. G. and Pindera, M.-J. (1994) Elastic Response of a Layered Cylinder Subjected to Diametral Loading, Composites Engineering 4, 995–1009.CrossRefGoogle Scholar
  3. 3.
    Doeblin, E. O., (1983) Measurement Systems. Application and Design, McGraw-Hill Book Co., New York.Google Scholar
  4. 4.
    Feynman, R., (1993) The Character of Physical Law, The MIT Press, Cambridge, Massachusetts.Google Scholar
  5. 5.
    Haddad, Y. M. (1995) Viscoelasticity of Engineering Materials, Chapman & Hall. London.Google Scholar
  6. 6.
    Kac, M. (1969) Some Mathematical Models in Science, Science 166, 695–699.CrossRefGoogle Scholar
  7. 7.
    Kestin, J. (1979) A Course in Thermodynamics, Volume I and II, Hemisphere Publishing Corp. and McGraw-Hill Book Company, New York.Google Scholar
  8. 8.
    Kuhn, T. S. (1985) The Structure of Scientific Revolution, University of Chicago Press, Chicago.Google Scholar
  9. 9.
    Ladevèse, P. (ed.), (1985) Local Effects in the Analysis of Structures, Elsevier, New York.Google Scholar
  10. 10.
    Leipholz, H. H. E. (1983) On the Role of Analysis in Mechanics, Trans. of the CSME 7, 3–7.Google Scholar
  11. 11.
    Lewicki, B. and Pindera, J. T. (1956) Photoelastic Model of Reinforced Structures (in Polish), Archiwum Inżynierii Lądowej 2, 381–418.Google Scholar
  12. 12.
    Mazurkiewicz, S. B. and Pindera, J. T. (1979) Integrated Plane Photoelastic Method — Application of Photoelastic Isodynes, Experimental Mechanics 19, 225–234.CrossRefGoogle Scholar
  13. 13.
    Mönch, E. (1964) Similarity and Model Laws in Photoelastic Experiments, Experimental Mechanics 4, 141–150.CrossRefGoogle Scholar
  14. 14.
    Müller, R. (1964) Des Einfluss der Messlänge auf die Ergebnisse bei Dehnmessungen an Beton, beton 14, 205–208.Google Scholar
  15. 15.
    Pindera, J. T. (1966) Remarks on Properties of Photoviscoelastic Model Materials, Experimental Mechanics 7, 375–380.CrossRefGoogle Scholar
  16. 16.
    Pindera, J. T. and Mazurkiewicz, S. B. (1981) Studies of Contact Problems Using Photoelastic Isodynes, Experimental Mechanics 21, 448–455.CrossRefGoogle Scholar
  17. 17.
    Pindera, J. T. (1981) Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation, in J. T. Pindera (ed.), New Physical Trends in Experimental Mechanics, International Centre for Mechanical Sciences, Udine, and Springer-Verlag, Wien, pp. 188–236.Google Scholar
  18. 18.
    Pindera, J. T. and Krasnowski, B. R. (1982) Determination of Stress Intensity Factors in Thin and Thick Plate Using Isodyne Photoelasticity, in L. A. Simpson (ed.), Fracture Problems and Solutions in the Energy Industry, Pergamon Press, pp. 147–156.Google Scholar
  19. 19.
    Pindera, J. T. (ed.) (1984) Modelling problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  20. 20.
    Pindera, J. T., Krasnowski, B. R. and Pindera, M.-J. (1985) Theory of Elastic and Photoelastic Isodynes. Samples of Applications in Composite Structures, Experimental Mechanics 25, 272–281.CrossRefGoogle Scholar
  21. 21.
    Pindera, J. T. (1987) Advanced Experimental Mechanics in Modern Engineering Science and Technology, Transactions of the CSME 11, 125–138.Google Scholar
  22. 22.
    Pindera, J. T. (1987) Advanced Experimental Mechanics and its Components: Theoretical, Physical, Analytical and Social Aspects, in A P. S. Selvadurai (ed.), Developments in Engineering Mechanics, Elsevier, New York, pp. 367–414.Google Scholar
  23. 23.
    Pindera, J. T. (1988) Local Effects — a Major Problem Of Contemporary Stress/Strength Analysis of Homogeneous and Composite Structures, in G. C. Sih, J. T. Pindera and S. V. Hoa (eds.), Analytical and Testing Methodologies for Design with Advanced Materials, North Holland, Amsterdam, pp. 9–55.Google Scholar
  24. 24.
    Pindera, M.-J., Pindera, J. T. and Ji, X. (1989) Three-dimensional Effects in Beams — Isodyne Assessment of a Plane Solution, Experimental Mechanics 29, 23–31.CrossRefGoogle Scholar
  25. 25.
    Pindera, J. T. (1989) Three-dimensional Stress Analysis of Composite Structures Using Isodyne Techniques, Polymer Composites 10, 270–284.CrossRefGoogle Scholar
  26. 26.
    Pindera, J. T. (1989) Local Effects and Defect Criticality in Homogeneous and Laminated Structures, Trans. ASME, J. Pressure Vessel Technology, 111, 136–150.Google Scholar
  27. 27.
    Pindera, J. T. and Pindera, M.-J. (1989) Isodyne Stress Analysis, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  28. 28.
    Pindera, J. T. and Wen, B. (1991) Isodyne Evaluation of Three-dimensional Stresses in Fracture Mechanics, in Proceedings of the 1991 SEM Spring Conference on Experimental Mechanics, The Society for Experimental Mechanics, Inc., Bethel, CT, USA, pp. 895–902.Google Scholar
  29. 29.
    Pindera, J. T. (1992) Actual Three-dimensional Stresses and Related Dynamic Fractures in Some Adhesively Bonded Structures, in Suong V. Hoa and Raymond Gauvin (eds.) Composite Structures and Materials, Elsevier Applied Science, London and New York, pp. 332–340.Google Scholar
  30. 30.
    Pindera, J. T. (1992) Three-dimensional Nondestructive Isodyne Stress Analysis in Fracture Mechanics, in Proceedings of the 1992 SEM International Congress on Experimental Mechanics, Vol 1, The Society for Experimental Mechanics, Inc. Bethel, Connecticut, USA, pp. 235–244.Google Scholar
  31. 31.
    Pindera, J. T. and Liu, X. (1992) On the Actual Three-dimensional Stresses in Notches and Cracks, Composites Engineering 1, 281–301.CrossRefGoogle Scholar
  32. 32.
    Pindera, J. T. and Wang, G. (1992) Isodyne stress Analysis of Adhesively Bonded Symmetric Joints, Experimental Mechanics 32, 348–356.CrossRefGoogle Scholar
  33. 33.
    Pindera, J. T. (1993) On the Limits of Two-dimensional Treatment of the Actual Three-dimensional Stress States in Adhesively Bonded Composite Structures, in William Wallace, Raymond Gauvin, Suong V. Hoa (eds.) CANCOM ’93, Second Canadian International Composites Conference and Exhibition, Canadian Association for Composite Structures and Materials, Montreal, pp. 917–925.Google Scholar
  34. 34.
    Pindera, J. T. (1995) Scattered-light Optical Isodynes — Basis for Three-dimensional Isodyne Stress Analysis, Optics and Lasers in Engineering 22, 373–425.CrossRefGoogle Scholar
  35. 35.
    Pindera, J. T., Josepson, J. and Jovanovié, D. B. (1997) Electronic Techniques in Isodyne Stress Analysis. Part 1: Basic Relations. Part 2: Illustrating Studies and Discussion, Experimental Mechanics 37, 33–38, 110–114.Google Scholar
  36. 36.
    Pindera, J. T. (1995) Three-dimensional Isodyne Stress Analysis — Present State, Trends, Theoretical Problems, ACTA MECHANICA SINICA 11, 97–121.CrossRefGoogle Scholar
  37. 37.
    Popper, K. R. (1968) The Logic of Scientific Discovery, Harper and Row, New York.Google Scholar
  38. 38.
    Sokolnikoff, I. S. (1956) Mathematical Theory of Elasticity, McGraw-Hill Book Co., New York.Google Scholar
  39. 39.
    Stuart, H. A. (ed.), (1952–1956) Die Physik der Hochpolymeren I–IV, Springer-Verlag, Berlin.Google Scholar
  40. 40.
    Thum, A. et all. (1960) Verformung, Spannung und Kerbwirkung (Deformation, Stress and Notch Action), VDI-Verlag, Düsseldorf.Google Scholar
  41. 41.
    Timoshenko, S. P. and Goodier, J. N. (1970) Theory of Elasticity, McGraw-Hill Book Company, New York.Google Scholar
  42. 42.
    Życzkowski, M. (1981) Combined Loading in the Theory of Plasticity, PWN — Polish Scientific Publishers, Warszawa.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. T. Pindera
    • 1
  1. 1.Department of Civil EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations